Nothing
#' Visualize SHAP Values for Neural Network Model
#'
#' Visualizes SHAP (Shapley Additive Explanations) values for a neural network
#' model by employing the DALEXtra and DALEX packages to provide visual insights
#' into the impact of a specified variable on the model's predictions.
#'
#' @import DALEX
#' @import DALEXtra
#' @import parsnip
#' @import recipes
#' @import rsample
#' @import vdiffr
#' @import workflows
#' @importFrom stats as.formula
#'
#' @param vip_featured A character value
#' @param hiv_data A data frame
#' @param hu A numeric value
#' @param plty A numeric value
#' @param epo A numeric value
#' @param vip_train A data frame
#' @param vip_new A numeric vector
#' @param orderings A numeric value
#'
#' @return A ggplot object
#' @export
#'
#' @examples
#' library(dplyr)
#' library(rsample)
#' cd_2019 <- c(824, 169, 342, 423, 441, 507, 559,
#' 173, 764, 780, 244, 527, 417, 800,
#' 602, 494, 345, 780, 780, 527, 556,
#' 559, 238, 288, 244, 353, 169, 556,
#' 824, 169, 342, 423, 441, 507, 559)
#' vl_2019 <- c(40, 11388, 38961, 40, 75, 4095, 103,
#' 11388, 46, 103, 11388, 40, 0, 11388,
#' 0, 4095, 40, 93, 49, 49, 49,
#' 4095, 6837, 38961, 38961, 0, 0, 93,
#' 40, 11388, 38961, 40, 75, 4095, 103)
#' cd_2021 <- c(992, 275, 331, 454, 479, 553, 496,
#' 230, 605, 432, 170, 670, 238, 238,
#' 634, 422, 429, 513, 327, 465, 479,
#' 661, 382, 364, 109, 398, 209, 1960,
#' 992, 275, 331, 454, 479, 553, 496)
#' vl_2021 <- c(80, 1690, 5113, 71, 289, 3063, 0,
#' 262, 0, 15089, 13016, 1513, 60, 60,
#' 49248, 159308, 56, 0, 516675, 49, 237,
#' 84, 292, 414, 26176, 62, 126, 93,
#' 80, 1690, 5113, 71, 289, 3063, 0)
#' cd_2022 <- c(700, 127, 127, 547, 547, 547, 777,
#' 149, 628, 614, 253, 918, 326, 326,
#' 574, 361, 253, 726, 659, 596, 427,
#' 447, 326, 253, 248, 326, 260, 918,
#' 700, 127, 127, 547, 547, 547, 777)
#' vl_2022 <- c(0, 0, 53250, 0, 40, 1901, 0,
#' 955, 0, 0, 0, 0, 40, 0,
#' 49248, 159308, 56, 0, 516675, 49, 237,
#' 0, 23601, 0, 40, 0, 0, 0,
#' 0, 0, 0, 0, 0, 0, 0)
#' x <- cbind(cd_2019, vl_2019, cd_2021, vl_2021, cd_2022, vl_2022) |>
#' as.data.frame()
#' set.seed(123)
#' hi_data <- rsample::initial_split(x)
#' set.seed(123)
#' hiv_data <- hi_data |>
#' rsample::training()
#' hu <- 5
#' plty <- 1.131656e-09
#' epo <- 176
#' vip_featured <- c("cd_2022")
#' vip_features <- c("cd_2019", "vl_2019", "cd_2021", "vl_2021", "vl_2022")
#' set.seed(123)
#' vi_train <- rsample::initial_split(x)
#' set.seed(123)
#' vip_train <- vi_train |>
#' rsample::training() |>
#' dplyr::select(rsample::all_of(vip_features))
#' vip_new <- vip_train[1,]
#' orderings <- 20
#' viralx_nn_vis(vip_featured, hiv_data, hu, plty, epo, vip_train, vip_new, orderings)
viralx_nn_vis <- function(vip_featured, hiv_data, hu, plty, epo, vip_train, vip_new, orderings) {
DALEXtra::explain_tidymodels(workflows::workflow() |>
workflows::add_recipe(recipes::recipe(stats::as.formula(paste(vip_featured,"~.")), data = hiv_data) |>
recipes::step_normalize(recipes::all_predictors())) |>
workflows::add_model(parsnip::mlp(hidden_units = hu, penalty = plty, epochs = epo) |>
parsnip::set_engine("nnet", MaxNWts = 2600) |>
parsnip::set_mode("regression")) |>
parsnip::fit(data = hiv_data), data = vip_train,
y = vip_featured,
label = "nn + normalized",
verbose = FALSE) |>
DALEX::predict_parts(vip_new, type ="shap", B = orderings) |>
plot()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.