Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
eval = nzchar(Sys.getenv("VIGNETTES")), # Only compile locally
collapse = TRUE,
comment = "#>",
fig.width = 8,
fig.height = 5,
out.width = "100%"
)
# Okabe-Ito colours for discrete scales
options(
ggplot2.discrete.colour = c("#D55E00", "#0072B2", "#009E73", "#CC79A7", "#E69F00", "#56B4E9", "#F0E442"),
ggplot2.discrete.fill = c("#D55E00", "#0072B2", "#009E73", "#CC79A7", "#E69F00", "#56B4E9", "#F0E442")
)
## ----packages, message = FALSE, eval = TRUE-----------------------------------
library(vital)
library(tsibble)
library(dplyr)
library(ggplot2)
## ----example, eval = TRUE-----------------------------------------------------
nor <- norway_mortality |>
filter(Sex != "Total") |>
collapse_ages(max_age = 100)
nor
## ----vars---------------------------------------------------------------------
index_var(nor)
key_vars(nor)
vital_vars(nor)
## ----autoplot, warning = FALSE, fig.cap="", fig.alt="Rainbow plot of mortality rates in Norway."----
nor |>
autoplot(Mortality) +
scale_y_log10()
## ----pyramid, fig.cap="", fig.alt="Population pyramids for Norway."-----------
nor |>
mutate(Population = if_else(Sex == "Female", -Population, Population)) |>
autoplot(Population) +
coord_flip() +
facet_grid(. ~ Sex, scales = "free_x")
## ----lifetable----------------------------------------------------------------
# Life tables for males and females in Norway in 2000
nor |>
filter(Year == 2000) |>
life_table()
## ----e0, fig.cap="", fig.alt="Life expectancy at birth in Norway."------------
# Life expectancy for males and females in Norway
nor |>
life_expectancy() |>
ggplot(aes(x = Year, y = ex, color = Sex)) +
geom_line()
## ----smoothing, fig.cap="", fig.alt="Smoothed mortality rates in Norway for 1967."----
# Smoothed data
nor |>
filter(Year == 1967) |>
smooth_mortality(Mortality) |>
autoplot(Mortality) +
geom_line(aes(y = .smooth), col = "#0072B2") +
ylab("Mortality rate") +
scale_y_log10()
## ----lc-----------------------------------------------------------------------
# Lee-Carter model
lc <- nor |>
model(lee_carter = LC(log(Mortality)))
lc
## ----lc2----------------------------------------------------------------------
lc |>
filter(Sex == "Female") |>
report()
## ----lc3, fig.cap="", fig.alt="Components from Lee-Carter model."-------------
autoplot(lc)
## ----lccomponents-------------------------------------------------------------
age_components(lc)
time_components(lc)
## ----lc5----------------------------------------------------------------------
# Forecasts from Lee-Carter model
lc |>
forecast(h = 20)
## ----fdm, fig.cap="", fig.alt="First few components from functional data model for mortality in Norway."----
# FDM model
fdm <- nor |>
smooth_mortality(Mortality) |>
model(hu = FDM(log(.smooth)))
fc_fdm <- fdm |>
forecast(h = 20)
autoplot(fc_fdm) +
scale_y_log10()
## ----fdmplot, fig.cap="", fig.alt="First three components from functional data model for mortality in Norway."----
fdm |>
autoplot(show_order = 3)
## ----fdmcomponents------------------------------------------------------------
age_components(fdm)
time_components(fdm)
## ----coherent-----------------------------------------------------------------
fdm_coherent <- nor |>
smooth_mortality(Mortality) |>
make_pr(.smooth) |>
model(hby = FDM(log(.smooth), coherent = TRUE))
fc_coherent <- fdm_coherent |>
forecast(h = 20) |>
undo_pr(.smooth)
fc_coherent
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.