Nothing
test_that("valid arguments are passed - Binning", {
n=100
p=200
Te=201
w=matrix(1,n,p)
expect_error(Binning(w=w,Te=Te,p=p,n=n))
Te=20
expect_error(Binning(w=t(w),Te=Te,p=p,n=n))
})
test_that("output type and length are correct - Binning", {
n=100
p=200
Te=4
w=matrix(1,n,p)
expect_type(Binning(w=w,Te=Te,p=p,n=n), "list")
expect_length(Binning(w=w,Te=Te,p=p,n=n), 2)
})
test_that("number of points per bin is correct - Binning", {
#Case: n>1 and p/Te integer > 1
n=100
p=200
Te=10
w=matrix(1,n,p)
expect_equal(Binning(w=w,Te=Te,p=p,n=n)$m, max(2,round(p/Te))*n)
#Case: n>1 and p/Te not an integer
n=100
p=200
Te=11
w=matrix(1,n,p)
expect_equal(Binning(w=w,Te=Te,p=p,n=n)$m, max(2,round(p/Te))*n)
#Case: n>1 and p/Te = 1
n=100
p=200
Te=p
w=matrix(1,n,p)
expect_equal(Binning(w=w,Te=Te,p=p,n=n)$m, n)
#Case: n=1 and p/Te not an integer
n=1
p=200
Te=6
w=matrix(1,n,p)
expect_equal(Binning(w=w,Te=Te,p=p,n=n)$m, max(2,round(p/Te))*n)
})
test_that("length of binned vector is correct - Binning", {
#Case: n>1 and p/Te integer > 1
n=100
p=200
Te=10
w=matrix(1,n,p)
expect_length(Binning(w=w,Te=Te,p=p,n=n)$w.star,Te)
#Case: n>1 and p/Te not an integer
n=100
p=200
Te=11
w=matrix(1,n,p)
mm=max(2,round(p/Te))
expect_length(Binning(w=w,Te=Te,p=p,n=n)$w.star,floor(p/mm))
#Case: n>1 and p/Te = 1
n=100
p=200
Te=p
w=matrix(1,n,p)
expect_length(Binning(w=w,Te=Te,p=p,n=n)$w.star,Te)
#Case: n=1 and p/Te not an integer
n=1
p=200
Te=6
w=matrix(1,n,p)
mm=max(2,round(p/Te))
expect_length(Binning(w=w,Te=Te,p=p,n=n)$w.star,floor(p/mm))
})
test_that("output is correct - VST", {
w.star=seq(15)
m=10
expect_equal(VST(w.star=w.star,m=m),log(w.star/m)/sqrt(2))
})
test_that("valid arguments are passed - Data.trafo", {
n=100
p=200
Te=p+1
y=matrix(1,n,p)
expect_error(Data.trafo(y,Te))
})
test_that("output type and length are correct - Data.trafo", {
n=100
p=200
Te=10
y=matrix(1,n,p)
expect_type(Data.trafo(y=y,Te=Te), "list")
expect_length(Data.trafo(y=y,Te=Te), 2)
})
test_that("output is correct - Data.trafo",{
#Case: n>1 and p/Te integer > 1
n=100
p=200
Te=10
y=matrix(1,n,p)
expect_length(Data.trafo(y=y,Te=Te)$y.star, 2*Te-2)
expect_equal(Data.trafo(y=y,Te=Te)$m,max(2,round(p/Te))*n)
#Case: n>1 and p/Te not an integer
n=100
p=200
Te=11
y=matrix(1,n,p)
mm=max(2,round(p/Te))
Tee=floor(p/mm)
expect_length(Data.trafo(y=y,Te=Te)$y.star, 2*Tee-2)
expect_equal(Data.trafo(y=y,Te=Te)$m,max(2,round(p/Te))*n)
#Case: n>1 and p/Te = 1
n=100
p=200
Te=p
y=matrix(1,n,p)
expect_length(Data.trafo(y=y,Te=Te)$y.star,2*Te-2)
expect_equal(Data.trafo(y=y,Te=Te)$m,n)
#Case: n=1 and p/Te not an integer
n=1
p=200
Te=6
y=matrix(1,n,p)
mm=max(2,round(p/Te))
Tee=floor(p/mm)
expect_length(Data.trafo(y=y,Te=Te)$y.star, 2*Tee-2)
expect_equal(Data.trafo(y=y,Te=Te)$m,max(2,round(p/Te))*n)
})
test_that("valid arguments are passed - SSper.estimator",{
n=100
x=seq(1,n)/n
y.star=seq(1,100)
expect_error(SSper.estimator(x,y.star,lambda=1,q=5))
expect_error(SSper.estimator(x,y.star,lambda=-1,q=2))
})
test_that("output type and length are correct - SSper.estimator",{
Te=100
x=seq(1,Te)/Te
y.star=seq(1,100)
q=3
m=10
expect_type(SSper.estimator(x,y.star,lambda=1,q=q), "list")
expect_length(SSper.estimator(x,y.star,lambda=1,q=q), 2)
expect_length(SSper.estimator(x,y.star,lambda=1,q=q)$f, Te)
expect_length(SSper.estimator(x,y.star,lambda=1,q=q)$evals, Te)
})
test_that("valid arguments are passed - sdf.estimator",{
n=100
x=seq(1,n)/n
y.star=seq(1,100)
m=10
expect_error(sdf.estimator(x,y.star,lambda=1,q=5,m))
expect_error(sdf.estimator(x,y.star,lambda=-1,q=2,m))
})
test_that("output type and length are correct - sdf.estimator",{
Te=100
x=seq(1,Te)/Te
y.star=seq(1,100)
q=3
m=10
expect_type(sdf.estimator(x,y.star,lambda=1,q=q,m), "list")
expect_length(sdf.estimator(x,y.star,lambda=1,q=q,m), 2)
expect_length(sdf.estimator(x,y.star,lambda=1,q=q,m)$f, Te)
expect_length(sdf.estimator(x,y.star,lambda=1,q=q,m)$Hf, Te)
})
test_that("valid arguments are passed - Toep.estimator",{
n=100
p=200
Te=10
set.seed(11)
acf=c(1.44,1.44/(1+seq(1,p-1))^2.1)
Sigma=toeplitz(acf)
y=matrix(MASS::mvrnorm(n, mu=numeric(p), Sigma=Sigma),n,p)
expect_error(Toep.estimator(y=y,Te=Te,q=5,method="GCV",f.true=NULL))
expect_error(Toep.estimator(y=y,Te=p+1,q=2,method="ML",f.true=NULL))
expect_error(Toep.estimator(y=y,Te=Te,q=2,method="rML",f.true=NULL))
expect_error(Toep.estimator(y=y,Te=Te,q=2,method="ML-oracle",f.true=NULL))
})
test_that("output type and length are correct - Toep.estimator",{
n=100
p=200
Te=10
q=3
method="GCV"
set.seed(11)
acf=c(1.44,1.44/(1+seq(1,p-1))^2.1)
Sigma=toeplitz(acf)
y=matrix(MASS::mvrnorm(n, mu=numeric(p), Sigma=Sigma),n,p)
expect_type(Toep.estimator(y=y,Te=Te,q=q,method=method,f.true=NULL), "list")
expect_length(Toep.estimator(y=y,Te=Te,q=q,method=method,f.true=NULL), 4)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.