Nothing
#' Create categorical details csv
#'
#' This function returns a categorical details csv. Containing categorical information about the dataset
#'
#' @param data A dataframe for which to create a categorical details csv.
#' @param mapping A dataframe containing a mapping named vector, containing preferred fieldnames
#' Example:
#' column_names <- c(
#' mpg = "mpg", cyl = "cyl", disp = "disp", hp = "hp",
#' drat = "drat", wt = "wt", qsec = "qsec", vs = "vs",
#' am = "am", gear = "gear", carb = "carb", spare_tire = "spare_tire"
#' @return Dataframe containing categorical details
#' @export
create_categorical_details <- function(data, mapping) {
categorical_cols <- data %>% dplyr::select(dplyr::where(~ is.factor(.) | is.character(.)))
if (ncol(categorical_cols) == 0) {
return(dplyr::tibble(
preferred_field_name = character()
))
}
result <- categorical_cols %>%
dplyr::summarise(dplyr::across(dplyr::everything(), get_ratio_separate)) %>%
tidyr::pivot_longer(dplyr::everything(),
names_to = "raw_field_name",
values_to = "values"
) %>%
dplyr::group_by(raw_field_name) %>%
dplyr::mutate(col_num = rep(1:10, length.out = dplyr::n())) %>% # Changed from 1:20 to 1:10
tidyr::pivot_wider(
names_from = col_num, values_from = values,
names_prefix = "value_"
) %>%
dplyr::ungroup() %>%
dplyr::mutate(preferred_field_name = mapping[raw_field_name]) %>%
dplyr::select(preferred_field_name, starts_with("value_"))
colnames(result)[2:11] <- c( # Changed from 2:21 to 2:11
"category_1", "percent_1", "category_2", "percent_2",
"category_3", "percent_3", "category_4", "percent_4",
"category_5", "percent_5"
)
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.