Description Usage Arguments Details Value Author(s) References Examples
View source: R/ord.reg.univar.R
Maximum Likelihood for Ordinal Probit and Logit: Newton-Raphson minimization of negative log-likelihood.
1  | iee.ord(x,y,link,iprint=0,maxiter=20,toler=1.e-6)
 | 
x | 
 vector or matrix of explanatory variables. Each row corresponds to an observation and each column to a variable. The number of rows of x should equal the number of data values in y, and there should be fewer columns than rows. Missing values are not allowed.  | 
y | 
 numeric vector containing the ordinal response. The values must be in the range 1,2,..., number of categories. Missing values are not allowed.  | 
link | 
 The link function.Choices are “logit” for the logit link function, and “probit” for the probit link function.  | 
iprint | 
 logical indicator, default is FALSE, for whether the iterations for numerical maximum likelihood should be printed.  | 
maxiter | 
 maximum number of Newton-Raphson iterations, default = 20.  | 
toler | 
 tolerance for convergence in Newton-Raphson iterations, default = 1.e-6.  | 
The ordinal probit model is similar to the ordinal logit model. The parameter estimate of ordinal logit are roughly 1.8 to 2 times those of ordinal probit.
list of MLE of parameters and their associated standard errors, in the order cutpt1,...,cutpt(number of categ-1),b1,...b(number of covariates).
negloglik | 
 value of negative log-likelihood, evaluated at MLE  | 
gam | 
 MLE of ordered cutpoint parameters  | 
reg | 
 MLE of regression parameters  | 
cov | 
 estimated covariance matrix of the parameters  | 
Aristidis K. Nikoloulopoulos A.Nikoloulopoulos@uea.ac.uk
Harry Joe harry.joe@ubc.ca
Anderson, J.A. and Pemberton, J.D. (1985). The grouped continuous model for multivariate ordered categorical variables and covariate adjustment. Biometrics, 41, 875–885.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  |   ################################################################################
  #                         Ordinal regression 
  ################################################################################
  ################################################################################
  #                      read and set up data set
  ################################################################################
  data(arthritis)
  nn=nrow(arthritis)
  bas2<-bas3<-bas4<-bas5<-rep(0,nn)
  bas2[arthritis$b==2]<-1
  bas3[arthritis$b==3]<-1
  bas4[arthritis$b==4]<-1
  bas5[arthritis$b==5]<-1
  t2<-t3<-rep(0,nn)
  t2[arthritis$ti==3]<-1
  t3[arthritis$ti==5]<-1
  xdat=cbind(t2,t3,arthritis$trt,bas2,bas3,bas4,bas5,arthritis$age) 
  ydat=arthritis$y
  ################################################################################
  #                      select the link
  ################################################################################
  link="probit"
  ################################################################################
  i.est<- iee.ord(xdat,ydat,link)
  print(i.est)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.