Description Usage Format Details Source References Examples
Results from 48 studies on the effectiveness of school-based writing-to-learn interventions on academic achievement.
1 |
A data frame; for documentation, see dat.bangertdrowns2004
in Wolfgang Viechtbauer's R package metafor
.
This reproduced dataset and its documentation are credited to Wolfgang
Viechtbauer and his metafor
package (2010). Please see his package for
details.
Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. Review of Educational Research, 74, 29-58.
Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. Review of Educational Research, 74, 29-58.
Viechtbauer, W. (2010). Conducting meta-analysis in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
dat.bangertdrowns2004
# Extracting the effect sizes and sampling variances:
effect <- dat.bangertdrowns2004$yi
v <- dat.bangertdrowns2004$vi
# The weight-function model with no mean model:
weightfunct(effect, v)
# The weight-function model with a mean model:
weightfunct(effect, v, mods=~dat.bangertdrowns2004$info)
## End(Not run)
|
id author year grade length minutes wic feedback info pers imag
1 1 Ashworth 1992 4 15 NA 1 1 1 1 0
2 2 Ayers 1993 2 10 NA 1 NA 1 1 1
3 3 Baisch 1990 2 2 NA 1 0 1 1 0
4 4 Baker 1994 4 9 10 1 1 1 0 0
5 5 Bauman 1992 1 14 10 1 1 1 1 0
6 6 Becker 1996 4 1 20 1 0 0 1 0
7 7 Bell & Bell 1985 3 4 NA 1 1 1 1 0
8 8 Brodney 1994 1 15 NA 1 1 1 1 0
9 9 Burton 1986 4 4 NA 0 1 1 0 0
10 10 Davis, BH 1990 1 9 10 1 0 1 1 0
11 11 Davis, JJ 1996 4 15 NA 0 1 1 0 0
12 12 Day 1994 4 15 NA 0 1 1 1 0
13 13 Dipillo 1994 1 8 6 1 1 1 1 0
14 14 Ganguli 1989 4 4 4 1 0 1 0 0
15 15 Giovinazzo 1996 4 14 NA 0 1 1 0 0
16 16 Goss 1998 4 15 10 1 1 1 0 0
17 17 Greene et al. 1991 4 4 10 1 1 1 1 0
18 18 Guckin 1992 4 10 8 1 1 NA NA 0
19 19 Guckin 1992 4 10 8 1 1 NA NA 0
20 20 Horton et al. 1985 4 3 NA 0 1 1 0 0
21 21 Hyser 1992 1 24 10 1 0 1 1 1
22 22 Johnson, LA 1991 3 19 NA 0 1 1 0 0
23 23 Johnson, VM 1998 1 4 15 1 0 1 0 0
24 24 Kasparek 1993 3 12 NA 1 1 1 1 0
25 25 Konopack et al. 1990 2 1 NA 1 0 1 0 0
26 26 Langer & Applebee 1987 3 1 35 1 0 1 0 0
27 27 Langer & Applebee 1987 3 1 20 1 0 1 0 0
28 28 Licata 1993 3 1 15 1 1 1 0 0
29 29 Lodholz 1980 1 14 15 1 1 1 0 0
30 30 Madden 1993 1 20 8 1 0 1 1 0
31 31 Millican 1994 1 10 NA 1 1 1 1 1
32 32 Moynihan 1994 1 7 10 1 1 1 1 0
33 33 Mulvaney 1991 4 11 NA 1 1 1 0 0
34 34 Nieswandt 1997 3 NA NA 0 1 1 0 0
35 35 Radmacher 1995 4 NA NA 0 1 1 0 0
36 36 Reaves 1991 3 1 NA 1 0 1 0 0
37 37 Rivard 1996 2 6 55 1 0 1 0 0
38 38 Rodgers 1996 4 15 NA 0 1 1 0 0
39 39 Ross & Faucette 1994 4 15 NA 0 1 1 0 0
40 40 Sharp 1987 4 2 15 1 0 0 1 0
41 41 Shepard 1992 2 4 NA 0 1 1 0 0
42 42 Stewart 1992 3 24 5 1 1 1 1 0
43 43 Ullrich 1926 4 11 NA 0 1 1 0 0
44 44 Weiss & Walters 1980 4 15 3 1 0 1 0 0
45 45 Wells 1986 1 8 15 1 0 1 1 0
46 46 Willey 1988 3 15 NA NA 0 1 1 0
47 47 Willey 1988 2 15 NA NA 0 1 1 0
48 48 Youngberg 1989 4 15 10 1 1 1 0 0
meta subject ni yi vi
1 1 Nursing 60 0.65 0.070
2 0 Earth Science 34 -0.75 0.126
3 1 Math 95 -0.21 0.042
4 0 Algebra 209 -0.04 0.019
5 1 Math 182 0.23 0.022
6 0 Literature 462 0.03 0.009
7 1 Math 38 0.26 0.106
8 1 Math 542 0.06 0.007
9 0 Math 99 0.06 0.040
10 0 Social Studies 77 0.12 0.052
11 0 Statistics 40 0.77 0.107
12 1 Sociology 190 0.00 0.021
13 1 Math 113 0.52 0.037
14 0 Math 50 0.54 0.083
15 0 Algebra 47 0.20 0.086
16 0 Calculus 44 0.20 0.091
17 0 Comp Science and Chemistry 24 -0.16 0.167
18 NA Algebra 78 0.42 0.052
19 NA Algebra 46 0.60 0.091
20 0 Chemistry 64 0.51 0.065
21 0 Social Studies 57 0.58 0.073
22 0 Algebra 68 0.54 0.061
23 0 Math 40 0.09 0.100
24 1 Algebra 68 0.37 0.060
25 0 World History 48 -0.01 0.083
26 0 Social Studies 107 -0.13 0.037
27 0 Social Studies 58 0.18 0.069
28 0 Math in Science 225 0.27 0.018
29 0 Math 446 -0.02 0.009
30 1 Math 77 0.33 0.053
31 1 Math 243 0.59 0.017
32 1 Math 39 0.84 0.112
33 0 Management 67 -0.32 0.060
34 0 Chemistry 91 0.12 0.044
35 1 Psychology 36 1.12 0.129
36 0 Natural Resources 177 -0.12 0.023
37 0 Science 20 -0.44 0.205
38 0 Algebra 120 -0.07 0.033
39 0 Algebra 16 0.70 0.265
40 1 Biology 105 0.49 0.039
41 0 Math 195 0.20 0.021
42 1 Algebra 62 0.58 0.067
43 0 Educational Psychology 289 0.15 0.014
44 0 Statistics 25 0.63 0.168
45 1 Math 250 0.04 0.016
46 1 Biology 51 1.46 0.099
47 1 Social Studies 46 0.04 0.087
48 0 Algebra 56 0.25 0.072
Unadjusted Model (k = 48):
tau^2 (estimated amount of total heterogeneity): 0.0471 (SE = 0.0220)
tau (square root of estimated tau^2 value): 0.2169
Model Results:
estimate std.error z-stat p-val ci.lb ci.ub
Intercept 0.2207 0.04628 4.769 1.8518e-06 0.13 0.3114
Adjusted Model (k = 48):
tau^2 (estimated amount of total heterogeneity): 0.0276 (SE = 0.0238)
tau (square root of estimated tau^2 value): 0.1660
Model Results:
estimate std.error z-stat p-val ci.lb ci.ub
Intercept 0.1477 0.07311 2.020 0.043428 0.004358 0.2909
0.025 < p < 1 0.4664 0.34924 1.336 0.181690 -0.218065 1.1509
Likelihood Ratio Test:
X^2(df = 1) = 1.163544, p-val = 0.28073
Unadjusted Model (k = 46):
tau^2 (estimated amount of total heterogeneity): 0.0474 (SE = 0.0228)
tau (square root of estimated tau^2 value): 0.2176
Model Results:
estimate std.error z-stat p-val ci.lb
Intercept 0.2116385 0.1853 1.142034 0.25344 -0.1516
dat.bangertdrowns2004.info -0.0009761 0.1908 -0.005115 0.99592 -0.3750
ci.ub
Intercept 0.5749
dat.bangertdrowns2004.info 0.3731
Adjusted Model (k = 46):
tau^2 (estimated amount of total heterogeneity): 0.0280 (SE = 0.0251)
tau (square root of estimated tau^2 value): 0.1673
Model Results:
estimate std.error z-stat p-val ci.lb ci.ub
Intercept 0.136053 0.1663 0.8182 0.41325 -0.1899 0.4620
dat.bangertdrowns2004.info 0.005423 0.1558 0.0348 0.97224 -0.3000 0.3109
0.025 < p < 1 0.477992 0.3729 1.2820 0.19985 -0.2528 1.2088
Likelihood Ratio Test:
X^2(df = 1) = 1.006451, p-val = 0.31575
There were 2 cases removed from your dataset due to the presence of missing data. To view the row numbers of these cases, use the attribute '$removed'.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.