| load.Hst.ls.2Zs | R Documentation | 
Insert an observation matrix into space-time covariates, but segregate based on missing values
load.Hst.ls.2Zs(Z, Z.na, Hst.ls.Z, xwhich, rgr.lags = c(0))
| Z | Observation data.  A  | 
| Z.na | Missing data indicator.  A  | 
| Hst.ls.Z | Space-time covariates.  A list of length  | 
| xwhich | Which column-pair of  | 
| rgr.lags | Temporal lagging of  | 
This function, along with load.Hst.ls.Z, allows the user to convert a set of observations into covariates for another set of observations.  Unlike load.Hst.ls.Z, this function splits Z based on the argument Z.na.  Values associated with FALSE elements of Z.na are placed into the first column of the specified column-pair of Hst.ls.Z, Values associated with TRUE elements of Z.na are placed into the second column of the specified column-pair of Hst.ls.Z (all other values in in the specified column-pair of Hst.ls.Z are zeroed).
An unnamed list of length \tau, each element will be a numeric n x p_st matrix.
load.Hst.ls.Z.
###### here's an itty-bitty example
tau <- 7
n <- 5
Z <- matrix(1, tau, n)
Z.na <- matrix(FALSE, tau, n)
Z.na[2:3, 4] <- TRUE
Z[Z.na] <- 2
Hst.ls <- list()
for(i in 1:tau) { Hst.ls[[i]] <- matrix(rnorm(n*4), nrow=n) }
load.Hst.ls.2Zs(Z, Z.na, Hst.ls.Z=Hst.ls, 1, 0)
########## insert into cols 3 and 4
load.Hst.ls.2Zs(Z, Z.na, Hst.ls.Z=Hst.ls, 2, 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.