Nothing
#' Package
#'
#' @description Functions for Estimating a (c)DCC-GARCH Model in large dimensions based on a publication by Engle et,al (2017) and Nakagawa et,al (2018).
#' This estimation method is consist of composite likelihood method by Pakel et al. (2014) and (Non-)linear shrinkage estimation of covariance matrices by Ledoit and Wolf (2004,2015,2016).
#'
#' @details To estimate the covariance matrix in financial time series,
#' it is necessary consider two important aspects: the cross section and the time series.
#' With regard to the cross section, we have the difficulty of correcting the biases of
#' the sample covariance matrix eigenvalues in a large number of time series.
#' With regard to the time series aspect, we have to account for volatility clustering and time-varying correlations.
#' This package is implemented the improved estimation of the covariance matrix based on the following publications:
#'
#' \itemize{\item Aielli, Gian Piero. (2013).
#' Dynamic conditional correlation: on properties and estimation. Journal of Business & Economic Statistics 31: 282-99. <doi:10.1080/07350015.2013.771027>
#' \item Engle, Robert F. (2002).
#' Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models.
#' Journal of Business & Economic Statistics 20: 339-50. <doi:10.1198/073500102288618487>
#' \item Engle, Robert F, Olivier Ledoit, and Michael Wolf. (2017).
#' Large dynamic covariance matrices. Journal of Business & Economic Statistics, 1-13. <doi:10.1080/07350015.2017.1345683>
#' \item Kei Nakagawa, Mitsuyoshi Imamura and Kenichi Yoshida. (2018). Risk-Based Portfolios with Large Dynamic Covariance Matrices.
#' International Journal of Financial Studies, 6(2), 1-14. <doi:10.3390/ijfs6020052>
#' \item Ledoit, O. and Wolf, M. (2004). A well-conditioned
#' estimator for large-dimensional covariance matrices. Journal of
#' Multivariate Analysis, 88(2). <doi:10.1016/S0047-259X(03)00096-4>
#' \item Ledoit, O. and Wolf, M. (2012).
#' Nonlinear shrinkage estimation of large-dimensional covariance matrices.
#' Annals of Statistics, 40(2). <doi:10.1214/12-AOS989>
#' \item Ledoit, O. and Wolf, M. (2015). Spectrum
#' estimation: a unified framework for covariance matrix estimation and PCA in
#' large dimensions. Journal of Multivariate Analysis, 139(2). <doi:10.1016/j.jmva.2015.04.006>
#' \item Pakel, Cavit and Shephard, Neil and Sheppard, Kevin and Engle, Robert F. (2014). Fitting vast dimensional time-varying covariance models.
#' Technical report <http://paneldataconference2015.ceu.hu/Program/Cavit-Pakel.pdf>
#' }
#'
#' @name xdcclarge
#' @docType package
#' @import stats Rcpp nlshrink
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.