Nothing
#' Genetic operations for real-coded genetic and evolutionary algorithms.
#'
#' For real-coded genes, the \code{xegaDfGene} package provides
#' \itemize{
#' \item Gene initialization.
#' \item Decoding of parameters.
#' \item Scaling functions as a function factory for configuration.
#' \item Mutation functions as well as a function factory for configuration.
#' \item Crossover functions as well as a function factory for configuration.
#' \item Replication functions as well as a function factory for configuration.
#' }
#'
#' Current support:
#' Functions for differential evolution (de). See Price et al. (2005).
#'
#' @section Real-Coded Gene Representation:
#'
#' A real-coded gene is a named list:
#' \itemize{
#' \item \code{$gene1}: the gene must be a vector of reals.
#' \item \code{$fit}: the fitness value of the gene
#' (for EvalGeneDet and EvalGeneU) or
#' the mean fitness (for stochastic functions
#' evaluated with EvalGeneStoch).
#' \item \code{$evaluated}: has the gene been evaluated?
#' \item \code{$evalFail}: has the evaluation of the gene failed?
#' \item \code{$var}: the cumulative variance of the fitness
#' of all evaluations of a gene.
#' (For stochastic functions)
#' \item \code{$sigma}: the standard deviation of the fitness of
#' all evaluations of a gene.
#' (For stochastic functions)
#' \item \code{$obs}: the number of evaluations of a gene.
#' (For stochastic functions)
#' }
#'
#' @section Abstract Interface of Problem Environment:
#'
#' We reuse the abstract interface of a problem environment
#' for binary-coded genes. The number of parameters
#' is given by \code{length(penv$bitlength())}.
#'
#' A problem environment \code{penv} must provide:
#' \itemize{
#' \item \code{$f(parameters, gene, lF)}:
#' Function with a real parameter vector as first argument
#' which returns a gene
#' with evaluated fitness.
#'
#' \item $genelength(): The number of bits of the binary coded
#' real parameter vector. Used in \code{InitGene}.
#' \item $bitlength(): A vector specifying the number of bits
#' used for coding each real parameter.
#' If \code{penv$bitlength()[1]} is \code{20},
#' then \code{parameters[1]} is coded by 20 bits.
#' Used in \code{GeneMap}.
#' \item $lb(): The lower bound vector of each parameter.
#' Used in \code{GeneMap}.
#' \item $ub(): The upper bound vector of each parameter.
#' Used in \code{GeneMap}.
#' }
#'
#' @section The Architecture of the xegaX-Packages:
#'
#' The xegaX-packages are a family of R-packages which implement
#' eXtended Evolutionary and Genetic Algorithms (xega).
#' The architecture has 3 layers,
#' namely the user interface layer,
#' the population layer, and the gene layer:
#'
#' \itemize{
#' \item
#' The user interface layer (package \code{xega})
#' provides a function call interface and configuration support
#' for several algorithms: genetic algorithms (sga),
#' permutation-based genetic algorithms (sgPerm),
#' derivation-free algorithms as e.g. differential evolution (sgde),
#' grammar-based genetic programming (sgp) and grammatical evolution
#' (sge).
#'
#' \item
#' The population layer (package \code{xegaPopulation}) contains
#' population-related functionality as well as support for
#' population statistics dependent adaptive mechanisms and parallelization.
#'
#' \item
#' The gene layer is split into a representation-independent and
#' a representation-dependent part:
#' \enumerate{
#' \item
#' The representation-independent part (package \code{xegaSelectGene})
#' is responsible for variants of selection operators, evaluation
#' strategies for genes, as well as profiling and timing capabilities.
#' \item
#' The representation-dependent part consists of the following packages:
#' \itemize{
#' \item \code{xegaGaGene} for binary coded genetic algorithms.
#' \item \code{xegaPermGene} for permutation-based genetic algorithms.
#' \item \code{xegaDfGene} for derivation-free algorithms as e.g.
#' differential evolution.
#' \item \code{xegaGpGene} for grammar-based genetic algorithms.
#' \item \code{xegaGeGene} for grammatical evolution algorithms.
#' }
#' The packages \code{xegaDerivationTrees} and \code{xegaBNF} support
#' the last two packages:
#' \code{xegaBNF} essentially provides a grammar compiler, and
#' \code{xegaDerivationTrees} is an abstract data type for derivation trees.
#' }}
#'
#' @references
#' Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005)
#' The Differential Evolution Algorithm (Chapter 2), pp. 37-134.
#' In: Differential Evolution. A Practical Approach to Global Optimization.
#' Springer, Berlin.
#' <doi:10.1007/3-540-31306-0>
#'
#' @family Package Description
#'
#' @name xegaDfGene
#' @aliases xegaDfGene
#' @docType package
#' @title Package xegaDfGene.
#' @author Andreas Geyer-Schulz
#' @section Copyright: (c) 2023 Andreas Geyer-Schulz
#' @section License: MIT
#' @section <URL: https://github.com/ageyerschulz/xegaDfGene>
#' @section Installation: From CRAN by \code{install.packages('xegaDfGene')}
"_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.