Nothing
#
# (c) 2021 Andreas Geyer-Schulz
# Simple Genetic Algorithm in R. V 0.1
# Layer: Gene-level functions.
# Independent of gene representation.
# Package:
#
#' Individually adaptive mutation rate.
#'
#' @description The probability of applying a mutation operator
#' to a gene. The idea is that a gene selected for
#' reproduction whose fitness is
#' below a threshold value is mutated with a higher
#' probability to give it a chance.
#'
#' @details The probability of applying a mutation operator is
#' determined by a threshold: If the fitness of a gene
#' is higher than \code{lF$CutoffFit()*lF$CBestFitness()},
#' than return \code{lF$MutationRate1()}
#' else \code{lF$MutationRate2()}.
#'
#' Note that the idea is also applicable to gene specific
#' local mutation operators. For example, the bit mutation rate
#' of mutation operators for binary genes.
#'
#' @references
#' Stanhope, Stephen A. and Daida, Jason M. (1996)
#' An Individually Variable Mutation-rate Strategy for Genetic Algorithms.
#' In: Koza, John (Ed.)
#' Late Breaking Papers at the Genetic Programming 1996 Conference.
#' Stanford University Bookstore, Stanford, pp. 177-185.
#' (ISBN:0-18-201-031-7)
#'
#' @param fit Fitness of gene.
#' @param lF Local configuration.
#'
#' @return Mutation rate of a gene depending on its fitness.
#'
#' @family Adaptive Rates
#'
#' @examples
#' parm<-function(x){function() {return(x)}}
#' lF<-list()
#' lF$MutationRate1<-parm(0.20)
#' lF$MutationRate2<-parm(0.40)
#' lF$CutoffFit<-parm(0.60)
#' lF$CBestFitness=parm(105)
#' IAMRate(100, lF)
#' IAMRate(50, lF)
#' @export
IAMRate<-function(fit, lF)
{
if (fit>(lF$CutoffFit()*lF$CBestFitness()))
{lF$MutationRate1()}
else
{lF$MutationRate2()}
}
#' Constant mutation rate.
#'
#' @param fit Fitness of gene.
#' @param lF Local configuration.
#'
#' @return Constant mutation rate.
#'
#' @family Rates
#'
#' @examples
#' parm<-function(x){function() {return(x)}}
#' lF<-list()
#' lF$MutationRate1<-parm(0.20)
#' ConstMRate(100, lF)
#' ConstMRate(50, lF)
#' @export
ConstMRate<-function(fit, lF)
{ lF$MutationRate1() }
#' Configure the mutation rate function of a genetic algorithm.
#'
#' @description The \code{MutationRateFactory()} implements selection
#' of one of the crossover rate functions in this
#' package by specifying a text string.
#' The selection fails ungracefully (produces
#' a runtime error), if the label does not match.
#' The functions are specified locally.
#'
#' Current support:
#'
#' \enumerate{
#' \item "Const" returns \code{ConstMRate()} (Default).
#' \item "IV" returns \code{IAMrate()}.
#' This function gives bad genes a higher mutation rate.
#' }
#'
#' @param method A string specifying a function for the mutation rate.
#'
#' @return A mutation rate function.
#'
#' @family Configuration
#'
#' @examples
#' f<-MutationRateFactory("Const")
#' f(10, list(MutationRate1=function() {0.2}))
#' @export
MutationRateFactory<-function(method="Const") {
if (method=="Const") {f<- ConstMRate}
if (method=="IV") {f<- IAMRate}
if (!exists("f", inherits=FALSE))
{stop("Mutation Rate label ", method, " does not exist")}
return(f)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.