Nothing
#' `xlr_numeric` vector
#'
#' This creates an numeric vector that will be printed neatly and can easily be
#' exported to `Excel` using it's native format. You can
#' convert a vector back to its base type with [as_base_r()].
#'
#' Internally, `xlr_numeric` uses `vec_cast` to convert numeric types
#' to integers. Anything that `vec_cast` can handle so can `xlr_numeric`. Read
#' more about casting at \link[vctrs]{vec_cast}.
#'
#'
#' @param x
#' * For `xlr_numeric()`: A numeric vector
#' * For `is_xlr_numeric()`: An object to test
#' * For `as_xlr_numeric()` : a vector
#' @param dp the number of decimal places to print
#' @param scientific logical. Whether to format the numeric using scientific notation.
#' @param style Additional styling options for the vector. See [xlr_format_numeric] for more details.
#'
#' @return An S3 vector of class `xlr_numeric`
#'
#' @example inst/examples/xlr_numeric.R
#'
#' @seealso [xlr_percent()], [xlr_integer()], [xlr_vector()], [as_base_r()]
#'
#' @export
xlr_numeric <- function(x = numeric(),
dp = 2L,
scientific = FALSE,
style = xlr_format_numeric()){
# first we try and cast everything to the right type
x <- vec_cast(x, numeric())
dp <- vec_recycle(vec_cast(dp,integer()), 1L)
validate_xlr_numeric(x,
dp,
scientific,
style)
new_xlr_numeric(x,dp,scientific,style)
}
validate_xlr_numeric <- function(x = double(),
dp = integer(),
style = xlr_format_numeric(),
call = caller_env()){
if (dp < 0){
cli_abort("'dp' must be greater than zero not equal to {dp}.",
call = call)
} else if (dp > 12){
cli_abort("'dp' must be less than or equal to 12 not equal to {dp}. Risk loss of precision when exporting to Microsoft `Excel`.",
call = call)
}
}
#' Constructor of xlr_numeric
#' @inheritParams xlr_numeric
#' @param call the calling environment
#' @noRd
new_xlr_numeric <- function(x = double(),
dp = 0L,
scientific = FALSE,
style = xlr_format_numeric(),
call = caller_env()) {
type_abort(x,is_double,1.1,call = call)
type_abort(dp,is_integer,1L,call = call)
# check it is non empty
vec_check_size(dp,size = 1L,call = call)
type_abort(scientific,is_logical,FALSE,call = call)
type_abort(style,is_xlr_format,xlr_format_numeric(),call = call)
# finally we create our vector
new_vctr(x,
dp = dp,
scientific = scientific,
style = style,
class = "xlr_numeric",
inherit_base_type = TRUE)
}
pull_attr <- function(x,attr) attr(x,which = attr)
pull_dp <- function(x) attr(x,which = "dp")
pull_style <-function(x) attr(x,which = "style")
#' @export
format.xlr_numeric <- function(x, ...){
dp <- pull_dp(x)
# Lets pass the right options to formatC
if (pull_attr(x,"scientific")){
f <- 'e'
out_vec <- signif(vec_data(x),
digits = dp)
}
else{
f <- 'f'
out_vec <- round(vec_data(x),
digits = dp)
}
out <- formatC(out_vec,
digits=dp,
format=f,
# additionally it should have nice commas between numbers
big.mark = ',',
big.interval = 3L)
out[is.na(x)] <- NA
out
}
# Defines a nice shortening of the name the tibble uses
#' @export
vec_ptype_abbr.xlr_numeric <- function(x,...){
"x_num"
}
#- Typing-----------------------------------------------------------------------
#' Check if it is a percentage
#' @export
#' @rdname xlr_numeric
is_xlr_numeric <- function(x) {
inherits(x, "xlr_numeric")
}
#' now we can define a as_xlr_numeric function
#' @export
#' @rdname xlr_numeric
as_xlr_numeric <- function(x,
dp = 0L,
scientific = FALSE,
style = xlr_format_numeric()){
UseMethod("as_xlr_numeric")
}
#' @export
as_xlr_numeric.default <- function(x,
dp = 0L,
scientific = FALSE,
style = xlr_format_numeric()){
vec_cast(x,
xlr_numeric(dp = dp,
scientific = scientific,
style = style))
}
#' @export
as_xlr_numeric.character <- function(x,
dp = 0L,
scientific = FALSE,
style = xlr_format_numeric()){
# if R can work it out, cast it to a xlr_numeric with default settings
value <- as.double(x)
xlr_numeric(value,
dp = dp,
scientific = scientific,
style = style)
}
#' @export
as.numeric.xlr_numeric <- function(x,...){
vec_data(x)
}
#' @export
as.character.xlr_numeric <- function(x,...){
out <- vec_data(x)
as.character(out)
}
# Compatibility with S4 system
methods::setOldClass(c("xlr_numeric","vctrs_vctr"))
#' @export
vec_ptype2.xlr_numeric.xlr_numeric <- function(x,y,...){
if (!identical(attributes(x),attributes(y))){
rlang::warn('Attributes ("dp", "scientific", or "style) do not match, taking the attributes from the left-hand side.')
}
# come back an implement what happens with size and face
new_xlr_numeric(dp = pull_dp(x),
scientific = pull_attr(x,"scientific"),
style = pull_style(x))
}
#' @export
vec_cast.xlr_numeric.xlr_numeric <- function(x,to,...){
new_xlr_numeric(vec_data(x),
dp = pull_dp(to),
scientific = pull_attr(x,"scientific"),
style = pull_style(to))
}
#' @export
vec_ptype2.xlr_numeric.numeric <- function(x,y,...) x
#' @export
vec_ptype2.numeric.xlr_numeric <- function(x,y,...) y
#' @export
vec_cast.xlr_numeric.numeric <- function(x, to, ...){
xlr_numeric(vec_data(x),
dp = pull_dp(to),
scientific = pull_attr(to,"scientific"),
style = pull_style(to))
}
#' @export
vec_cast.numeric.xlr_numeric <- function(x, to, ...){
vec_cast(vec_data(x), to)
}
#' @export
vec_ptype2.xlr_numeric.double <- vec_ptype2.xlr_numeric.numeric
#' @export
vec_ptype2.double.xlr_numeric <- vec_ptype2.numeric.xlr_numeric
#' @export
vec_cast.xlr_numeric.double <- vec_cast.xlr_numeric.numeric
#' @export
vec_cast.double.xlr_numeric <- vec_cast.numeric.xlr_numeric
#' @export
vec_ptype2.xlr_numeric.integer <- vec_ptype2.xlr_numeric.numeric
#' @export
vec_ptype2.integer.xlr_numeric <- vec_ptype2.numeric.xlr_numeric
#' @export
vec_cast.xlr_numeric.integer <- vec_cast.xlr_numeric.numeric
#' @export
vec_cast.integer.xlr_numeric <- vec_cast.numeric.xlr_numeric
#- Add casting between different xlr types where it makes sense
# Define all the casting 'to' an xlr_percent
#' @export
vec_ptype2.xlr_numeric.xlr_percent <- function(x,y,...) x
#' @export
vec_cast.xlr_numeric.xlr_percent <- function(x,to,...) {
vec_cast(vec_data(x),xlr_numeric())
}
#' @export
vec_ptype2.xlr_numeric.xlr_integer <- function(x,y,...) x
#' @export
vec_cast.xlr_numeric.xlr_integer<- function(x,to,...) {
vec_cast(vec_data(x),xlr_numeric())
}
#- ARITHMETIC-------------------------------------------------------------------
#' @export
#' @method vec_arith xlr_numeric
vec_arith.xlr_numeric <- function(op, x, y, ...){
UseMethod("vec_arith.xlr_numeric",y)
}
#' @export
#' @method vec_arith.xlr_numeric default
vec_arith.xlr_numeric.default <- function(op, x, y, ...){
stop_incompatible_op(op,x,y)
}
# next we define a list of generics for arithmetic
#' @export
#' @method vec_arith.xlr_numeric xlr_numeric
vec_arith.xlr_numeric.xlr_numeric <- function(op, x, y, ...){
if (!identical(attributes(x),attributes(y))){
rlang::warn('Attributes ("dp", "scientific", or "style) do not match, taking the attributes from the left-hand side.')
}
new_xlr_numeric(vec_arith_base(op,x,y),
dp = pull_dp(x),
scientific = pull_attr(x,'scientific'),
style = pull_style(x))
}
# next we define a list of generics for arithmetic
#' @export
#' @method vec_arith.xlr_numeric numeric
vec_arith.xlr_numeric.numeric <- function(op, x, y, ...){
new_xlr_numeric(vec_arith_base(op,x,y),
dp = pull_dp(x),
scientific = pull_attr(x,'scientific'),
style = pull_style(x))
}
# next we define a list of generics for arithmetic
#' @export
#' @method vec_arith.numeric xlr_numeric
vec_arith.numeric.xlr_numeric <- function(op, x, y, ...){
new_xlr_numeric(vec_arith_base(op,x,y),
dp = pull_dp(y),
scientific = pull_attr(y,'scientific'),
style = pull_style(y))
}
#' @export
vec_math.xlr_numeric <- function(.fn, .x, ...){
vec_math_base(.fn, .x, ...)
}
#' @importFrom stats median
#' @export
median.xlr_numeric <- function(x, na.rm = FALSE, ...){
median(vec_data(x), na.rm = na.rm, ...)
}
#' @importFrom stats quantile
#' @export
quantile.xlr_numeric <- function(x, ...){
quantile(vec_data(x), ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.