dv_vs_ipred_modavg | R Documentation |
This is for use when the model averaging of a set is planned.
dv_vs_ipred_modavg(
xpdb_s,
...,
.lineage = FALSE,
algorithm = c("maa", "msa"),
weight_type = c("individual", "population"),
auto_backfill = FALSE,
weight_basis = c("ofv", "aic", "res"),
res_col = "RES",
quiet
)
dv_vs_pred_modavg(
xpdb_s,
...,
.lineage = FALSE,
algorithm = c("maa", "msa"),
weight_type = c("individual", "population"),
auto_backfill = FALSE,
weight_basis = c("ofv", "aic", "res"),
res_col = "RES",
quiet
)
ipred_vs_idv_modavg(
xpdb_s,
...,
.lineage = FALSE,
algorithm = c("maa", "msa"),
weight_type = c("individual", "population"),
auto_backfill = FALSE,
weight_basis = c("ofv", "aic", "res"),
res_col = "RES",
quiet
)
pred_vs_idv_modavg(
xpdb_s,
...,
.lineage = FALSE,
algorithm = c("maa", "msa"),
weight_type = c("individual", "population"),
auto_backfill = FALSE,
weight_basis = c("ofv", "aic", "res"),
res_col = "RES",
quiet
)
plotfun_modavg(
xpdb_s,
...,
.lineage = FALSE,
avg_cols = NULL,
avg_by_type = NULL,
algorithm = c("maa", "msa"),
weight_type = c("individual", "population"),
auto_backfill = FALSE,
weight_basis = c("ofv", "aic", "res"),
res_col = "RES",
.fun = NULL,
.funargs = list(),
quiet
)
xpdb_s |
< |
... |
< |
.lineage |
< |
algorithm |
< |
weight_type |
< |
auto_backfill |
< |
weight_basis |
< |
res_col |
< |
quiet |
< |
avg_cols |
< |
avg_by_type |
< |
.fun |
< |
.funargs |
< |
The desired plot
modavg_xpdb()
pheno_set %>%
dv_vs_ipred_modavg(run8,run9,run10, auto_backfill = TRUE)
pheno_set %>%
dv_vs_pred_modavg(run8,run9,run10, auto_backfill = TRUE)
pheno_set %>%
ipred_vs_idv_modavg(run8,run9,run10, auto_backfill = TRUE)
pheno_set %>%
pred_vs_idv_modavg(run8,run9,run10, auto_backfill = TRUE)
# Model averaged ETA covariates
pheno_set %>%
plotfun_modavg(run8,run9,run10, auto_backfill = TRUE,
avg_by_type = "eta",.fun = eta_vs_catcov,
# Note quoting
.funargs = list(etavar=quote(ETA1)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.