View source: R/kalmanBucyFilter.R
kalmanBucyFilter | R Documentation |
Estimates values of unobserved variables from observed variables in a Linear State Space Model.
kalmanBucyFilter(
yuima, params, mean_init, vcov_init = NULL, delta.vcov.solve = 0.001,
are = FALSE, explicit = FALSE, time_homogeneous = FALSE,
env = globalenv()
)
yuima |
A |
params |
A list of numeric values specifying the names and values of the model parameters. |
mean_init |
A numeric value specifying the initial value of the unobserved variables. |
vcov_init |
A matrix specifying the initial variance-covariance of the unobserved variables.
This argument is required if |
delta.vcov.solve |
A numeric value specifying the step size used to solve the mean squared error of the estimator. |
are |
A logical value. If |
explicit |
A logical value. If |
time_homogeneous |
A logical value. If |
env |
An environment object specifying the environment in which the model coefficients are evaluated. |
A yuima.kalmanBucyFilter
object.
model |
A |
mean |
A |
vcov |
An array object containing the estimated mean squared error of the estimator of unobserved variables. |
mean.init |
A numeric value representing the initial value of unobserved variables. |
vcov.init |
A matrix representing the initial mean squared error of the estimator of unobserved variables. |
delta |
A numeric value representing the time step of observations. |
data |
A |
YUIMA TEAM
Liptser, R. S., & Shiryaev, A. N. (2001). Statistics of Random Processes: General Theory. Springer.
vcov_init <- matrix(0.1)
mean_init <- 0
a <- 1.5
b <- 0.3
c <- 1
sigma <- 0.02
n <- 10^4
h <- 0.001
trueparam <- list(a = a, b = b, c = c, sigma = sigma)
mod <- setModel(drift = c("-a*X", "c*X"),
diffusion = matrix(c("b", "0", "0", "sigma"), 2, 2),
solve.variable = c("X", "Y"), state.variable = c("X", "Y"),
observed.variable = "Y")
samp <- setSampling(delta = h, n = n)
yuima <- simulate(mod, sampling = samp, true.parameter = trueparam)
res <- kalmanBucyFilter(
yuima, trueparam, mean_init, vcov_init, 0.001,
are = FALSE, env = globalenv()
)
# vcov and mean slots are accesible by mean and vcov method
mean(res)
vcov(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.