| lasso | R Documentation |
Adaptive LASSO estimation for stochastic differential equations.
lasso(yuima, lambda0, start, delta=1, ...)
yuima |
a yuima object. |
lambda0 |
a named list with penalty for each parameter. |
start |
initial values to be passed to the optimizer. |
delta |
controls the amount of shrinking in the adaptive sequences. |
... |
passed to |
lasso behaves more likely the standard qmle function in and
argument method is one of the methods available in optim.
From initial guess of QML estimates, performs adaptive LASSO estimation using the Least Squares Approximation (LSA) as in Wang and Leng (2007, JASA).
ans |
a list with both QMLE and LASSO estimates. |
The YUIMA Project Team
## Not run:
##multidimension case
diff.matrix <- matrix(c("theta1.1","theta1.2", "1", "1"), 2, 2)
drift.c <- c("-theta2.1*x1", "-theta2.2*x2", "-theta2.2", "-theta2.1")
drift.matrix <- matrix(drift.c, 2, 2)
ymodel <- setModel(drift=drift.matrix, diffusion=diff.matrix, time.variable="t",
state.variable=c("x1", "x2"), solve.variable=c("x1", "x2"))
n <- 100
ysamp <- setSampling(Terminal=(n)^(1/3), n=n)
yuima <- setYuima(model=ymodel, sampling=ysamp)
set.seed(123)
truep <- list(theta1.1=0.6, theta1.2=0,theta2.1=0.5, theta2.2=0)
yuima <- simulate(yuima, xinit=c(1, 1),
true.parameter=truep)
est <- lasso(yuima, start=list(theta2.1=0.8, theta2.2=0.2, theta1.1=0.7, theta1.2=0.1),
lower=list(theta1.1=1e-10,theta1.2=1e-10,theta2.1=.1,theta2.2=1e-10),
upper=list(theta1.1=4,theta1.2=4,theta2.1=4,theta2.2=4), method="L-BFGS-B")
# TRUE
unlist(truep)
# QMLE
round(est$mle,3)
# LASSO
round(est$lasso,3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.