# load ald
ald <- vroom::vroom(
fs::path(
path_db_datastore_export,
"credit_methodology_asset_production",
ext = "csv"
)
)
# kick out unrelevant columns
ald <- ald %>%
dplyr::select(
-c(
# emission_factor,
# emission_factor_unit,
is_eu_eligible,
is_eu_green,
city_name,
technology_type
)
)
# filter out unrelevant sectors
ald <- ald %>%
dplyr::filter(!sector %in% c("Aviation", "Shipping"))
# create new column asset_id_source which refers to AR
ald <- ald %>%
dplyr::mutate(asset_id_source = "AR") %>%
dplyr::select(asset_id, asset_id_source, tidyr::everything())
# choose final latitude and longitude as well as indicate the source
ald <- ald %>%
dplyr::mutate(
source_coordinates = dplyr::case_when(
!is.na(longitude) & !is.na(longitude) ~ "Exact Location",
(is.na(longitude) | is.na(latitude)) & (!is.na(city_longitude) & !is.na(city_latitude)) ~ "City Location",
TRUE ~ "Missing"
),
longitude = dplyr::case_when(
!is.na(longitude) & !is.na(latitude) ~ longitude,
(is.na(longitude) | is.na(latitude)) & (!is.na(city_longitude) & !is.na(city_latitude)) ~ city_longitude,
TRUE ~ as.double(NA)
),
latitude = dplyr::case_when(
!is.na(longitude) & !is.na(latitude) ~ latitude,
(is.na(longitude) | is.na(latitude)) & (!is.na(city_longitude) & !is.na(city_latitude)) ~ city_latitude,
TRUE ~ as.double(NA)
)
)
# create column "has_geo_data" based on whether latitude or longitude are available
ald <- ald %>%
dplyr::mutate(
has_geo_data = dplyr::case_when(
is.na(latitude) | is.na(longitude) ~ FALSE,
TRUE ~ TRUE
)
)
# reorder column structure
ald <- ald %>%
dplyr::select(
asset_id,
asset_id_source,
asset_name,
asset_location,
latitude,
longitude,
source_coordinates,
has_geo_data,
tidyr::everything()
)
# rename production unit to economic unit
ald <- ald %>%
dplyr::rename(economic_unit = production_unit)
# kick out unnecessary columns
ald <- ald %>%
dplyr::select(
-c(
city_latitude,
city_longitude
)
)
# create long format
ald <- ald %>%
tidyr::pivot_longer(
cols = contains("_20"),
names_to = "year",
values_to = "economic_value",
values_drop_na = TRUE
)
# create numeric year variable
ald <- ald %>%
dplyr::mutate(year = as.double(stringr::str_remove(year, "_")))
# save data
vroom::vroom_write(
ald,
fs::path(
path_db_pr_ald_prepared,
"AR_data",
ext = "csv"
),
delim = ","
)
# subset distinct ald and prepare as geo data
distinct_ald_data <- ald %>%
dplyr::distinct(asset_id, .keep_all = T) %>%
dplyr::filter(has_geo_data == TRUE) %>%
dplyr::select(asset_id, longitude, latitude)
vroom::vroom_write(
distinct_ald_data,
fs::path(
path_db_pr_ald_distinct_geo_data,
"AR_distinct_geo_data",
ext = "csv"
),
delim = ","
)
rm(ald, distinct_ald_data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.