Description Usage Arguments Value Examples
View source: R/prepare_for_timeline.R
Prepares sda_target-type data for timeline plot
1 2 3 4 5 6 7 8 9 10 11 12 | prepare_for_timelineA(
sda_target_data,
sector_filter = c("automotive", "aviation", "cement", "oil and gas", "shipping",
"steel", "power"),
year_start = 0,
year_end = Inf,
column_line_names = "emission_factor_metric",
value_to_plot = "emission_factor_value",
extrapolate_missing_values = FALSE
)
prepare_for_timelineB(data, extrapolate = FALSE)
|
sector_filter |
Sector to be used for filtering (character string of length 1). One of automotive, aviation, cement, oil and gas, shipping, steel, power)“'. |
year_start |
Start year of the plot (double). |
year_end |
End year of the plot (double). |
column_line_names |
Column specifying the names of lines to be plotted (character string). |
value_to_plot |
Column name of the value to be plotted (character string). |
data, sda_target_data |
Dataframe with columns sector, year and two other columns specifying value to be be plotted as timelines and line names (dataframe). |
extrapolate, extrapolate_missing_values |
Flag indicating if values should be extrapolated to match the furthest value in the data set. |
Dataframe with columns: year, line_name, value, extrapolated.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # prepare_for_timelineA() --------------------------------------------------
data <- sda_target
prepare_for_timelineA(
data,
sector_filter = "cement",
year_start = 2020,
year_end = 2050, column_line_names = "emission_factor_metric",
value_to_plot = "emission_factor_value",
extrapolate_missing_values = TRUE
)
# prepare_for_timelineA() --------------------------------------------------
data <- sda_target
tail(prepare_for_timelineB(data))
tail(prepare_for_timelineB(data, extrapolate = TRUE))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.