Description Usage Arguments Examples
extract variable importance of automl
1 | automlVarImp(lb, num_of_model = 5, num_of_vi = 10)
|
lb |
automl leaberboard |
num_of_model |
the number of model to extract automl vi |
num_of_vi |
the number of vi features to extract |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(rAutoFS)
library(h2o)
h2o.init()
data(churn, package = "rAutoFS")
data_hex <- as.h2o(churn)
y = "Churn."
x = colnames(data_hex)[colnames(data_hex)!=y]
splits <- h2o.splitFrame(data_hex, ratio = c(0.5, 0.3), seed = 1234)
train_hex <- splits[[1]]
valid_hex <- splits[[2]]
test_hex <- splits[[3]]
aml <- h2o.automl(
x = x, y = y,
training_frame = h2o.rbind(train_hex, valid_hex),
nfolds = 3,
leaderboard_frame = test_hex,
max_runtime_secs = 60*60,
max_models = 60,
exclude_algos = c("DeepLearning"),
seed = 1234
)
lb <- aml@leaderboard
automlVarImp(lb=lb, num_of_model=5, num_of_vi=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.