Description Usage Arguments Value Note Author(s) References Examples
Functions for computing posterior cluster probabilities (get.prob)
in the general GMCM as well as local and
adjusted irreproducibility discovery rates (get.IDR) in the
special GMCM.
1 2 3  | 
x | 
 A   | 
par | 
 A vector of length 4 where   | 
threshold | 
 The threshold level of the IDR rate.  | 
... | 
 Arguments passed to   | 
theta | 
 A list of parameters for the full model as described in
  | 
get.IDR returns a list of length 5 with elements:
idr | 
 A vector of the local idr values. I.e. the posterior
probability that   | 
IDR | 
 A vector of the adjusted IDR values.  | 
l | 
 The number of reproducible features at the specified
  | 
threshold | 
 The IDR threshold at which features are deemed reproducible.  | 
Khat | 
 A vector signifying whether the corresponding feature is reproducible or not.  | 
get.prob returns a matrix where entry (i,j) is the
posterior probability that the observation x[i, ] belongs to cluster
j.
From GMCM version 1.1 get.IDR has been an internal function.
Use get.prop or get.IDR instead. The function can still be
accessed with GMCM:::get.idr. get.idr returns a vector where
the i'th entry is the posterior probability that observation i
is irreproducible. It is a simple wrapper for get.prob.
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
Li, Q., Brown, J. B. J. B., Huang, H., & Bickel, P. J. (2011). Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics, 5(3), 1752-1779. doi:10.1214/11-AOAS466
Tewari, A., Giering, M., & Raghunathan, A. (2011). Parametric Characterization of Multimodal Distributions with Non-gaussian Modes. IEEE 11th International Conference on Data Mining Workshops, 2011, 286-292. doi:10.1109/ICDMW.2011.135
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  | set.seed(1123)
# True parameters
true.par <- c(0.9, 2, 0.7, 0.6)
# Simulation of data from the GMCM model
data <-  SimulateGMCMData(n = 1000, par = true.par, d = 2)
# Initial parameters
init.par <- c(0.5, 1, 0.5, 0.9)
# Nelder-Mead optimization
nm.par   <- fit.meta.GMCM(data$u, init.par = init.par, method = "NM")
# Get IDR values
res <- get.IDR(data$u, nm.par, threshold = 0.05)
# Plot results
plot(data$u, col = res$Khat, pch = c(3,16)[data$K])
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.