Description Usage Arguments Value References Examples
Computes the average eigenvalues produced by a Monte Carlo simulation that
randomly generates a large number of nxp matrices of standard
normal deviates.
| 1 | horns_curve(data, n, p, nsim = 1000L)
 | 
| data | A matrix or data frame. | 
| n | Integer specifying the number of rows. | 
| p | Integer specifying the number of columns. | 
| nsim | Integer specifying the number of Monte Carlo simulations to run.
Default is  | 
A vector of length p containing the averaged eigenvalues. The
values can then be plotted or compared to the true eigenvalues from a dataset
for a dimensionality reduction assessment.
J. L. Horn, "A rationale and test for the number of factors in factor analysis," Psychometrika, vol. 30, no. 2, pp. 179-185, 1965.
| 1 2 3 4 5 | # Perform Horn's Parallel analysis with matrix n x p dimensions
x <- matrix(rnorm(200 * 10), ncol = 10)
horns_curve(x)
horns_curve(n = 200, p = 10)
plot(horns_curve(x))  # scree plot
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.