Description Usage Arguments Value
Implementation of the MM algorithm solver for a linear regression model.
| 1 2 3 4 5 6 7 8 9 10 11 | 
| formula | an object of class  | 
| data | an optional data frame, list or environment (or object coercible
by  | 
| intercept | optional boolean indicating whether to fit an intercept. If
 | 
| standardize | optional boolean indicating whether to return results for
standardized data. If  | 
| beta.init | optional initial beta parameters to use in the MM
algorithm. Default is  | 
| beta.tol | optional absolute tolerance for rounding down parameter
standardized estimates. If the absolute value of a parameter estimate in the
standardized model is smaller than  | 
| loss.tol | optional convergence tolerance on the elastic net loss in
the MM algorithm. Default is  | 
| seed | optional seed. Default is  | 
| verbose | optional number indicating per how many iterations the
estimation progress is displayed. Default is  | 
mm.lm returns an object of class
mlkit.lm.fit. An object of class mlkit.lm.fit is a list
containing at least the following components:
| coefficients | a named vector of optimal coefficients. | 
| loss | residual sum of squares for optimal coefficients. | 
| r2 | coefficient of determination for optimal coefficients. | 
| adj.r2 | adjusted coefficient of determination for optimal coefficients. | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.