# load packages
require(data.table);library(usethis)
# -- prepare measures table -----
# load measures table
# Table was made in Github Repo 'NMI-DATA_script/bbwp/ppr_bbwp_measures.R'
# This is the table used for < version 2.3.0
bbwp_measures <- fread('dev/bbwp_measures.csv', encoding = 'UTF-8')
# save measures as bbwp table
use_data(bbwp_measures, overwrite = TRUE)
# -- prepare measures table (with landscape category)-----
# load updated measure table, which includes weighing factor for 5 landscape category and effect_wb was updated
# (for hydrological module, made for project 2044.N.24)
# The table was made in Github Repository "NMI-DATA_scripts"
# (https://github.com/AgroCares/NMI-DATA_scripts/blob/main/watersysteem/bbwp_hydrologische_module/bbwp_hydro_meas.R)
# This is the table userd for >= version 2.3.0
bbwp_measures <- fread('dev/bbwp_measures2.csv', encoding = 'UTF-8')
# Overwrite bbwp measure table
use_data(bbwp_measures, overwrite = TRUE)
# -- prepare table for which ER measures can be used on which crops ----
# load in csv
er_measures <- fread('dev/eco_brp.csv', encoding = 'UTF-8')
# remove brp codes that do not occur in pandex
er_measures <- er_measures[B_LU_BRP < 7000 & B_LU_BRP != 305,]
# add a column with applicability
er_measures[, eco_app := 1]
# save measures as bbwp table
use_data(er_measures, overwrite = TRUE)
# -- prepare ecoregeling objectives ----
# load in csv
er_scoring <- as.data.table(fread('dev/220519 ecorelingen opgave.csv',dec=','))
# save measures as bbwp table
use_data(er_scoring, overwrite = TRUE)
# -- prepare table for scores per farm-measure ----
# load in csv
er_farm_measure <- as.data.table(fread('dev/220517 farm measures.csv',dec=','))
# save measures as bbwp table
use_data(er_farm_measure, overwrite = TRUE)
# -- prepare crop specific tables for Ecoregelingen ----
er_crops <- pandex::b_lu_brp[,.(B_LU_BRP, B_LU_NAME, B_LU_BBWP, B_LU_ARABLE_ER, B_LU_PRODUCTIVE_ER, B_LU_CULTIVATED_ER)]
# save measures as bbwp table
use_data(er_crops, overwrite = TRUE)
fwrite(er_crops, 'dev/er_crops.csv', quote = TRUE)
# -- prepare correction factors for financial reward per Agricultural Economic Region for Ecoregelingen ----
# load in csv
er_aer_reward <- as.data.table(fread('dev/220519 ecoregeling reward weging.csv',dec=','))
# convert UTF-8 encoded strings to latin1 if required
if('UTF-8' %in% Encoding(er_aer_reward$statname)) {
er_aer_reward$statname <- iconv(er_aer_reward$statname, from = '', to = 'latin1')
}
# save measures as bbwp table
use_data(er_aer_reward, overwrite = TRUE)
# -- prepare LSW table ----
# library(sf); library(DBI); library(RPostgres)
# Connect to DB
con <- dbConnect(
RPostgres::Postgres(),
host = '127.0.0.1',
user = rstudioapi::askForPassword("user"),
dbname = 'nmi'
)
# read latest lsw polygones with opgaves
st_lsw <- st_read(con, Id(schema = "lookup", table = "oppervlaktewateropgave")) |> setDT()
# read mean and sd for lsw (should use fread, but didn't work)
prop_lsw <- st_read(con, Id(schema = "lookup", table = "oppervlaktewateropgave_distribution_properties")) |> setDT()
# merge both tables
lsw <- merge(st_lsw, prop_lsw, by = 'oow_id')
# make lsw as sf object
lsw <- st_as_sf(lsw)
# cast to polygon (otherwise later errors due to multipolygon)
lsw <- st_cast(lsw, 'MULTIPOLYGON')
# convert to data.table
lsw <- as.data.table(lsw)
# convert old element names for the case that they are present
setnames(lsw,
old = c('mean_p_vg','sd_p_vg','mean_os_gv','sd_os_gv'),
new = c('mean_p_sg','sd_p_sg','mean_som_loi','sd_som_loi'),
skip_absent = TRUE)
# convert to sf object again and save in dev
lsw <- st_as_sf(lsw)
# st_write(lsw,'dev/lswproperties.gpkg')
# convert to dlata.table and remove geometry
lsw <- as.data.table(lsw)
lsw[,geom := NULL]
# save lsw data
use_data(lsw, overwrite = T,compress='xz')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.