#' Maurice Stevenson Bartlett's car data
#'
#' @description This is an example data set Bartlett used for a lecture course on
#' stochastic processes, Statistics Department, University College, London.
#' The data represents the times, in seconds, when cars passed an observation point
#' by a road. \cr
#'
#' Bartlett attributes the data to a Dr A. J. Miller who supplied them as a class
#' example. According to Adery C. A. Hope the data was recorded on a rural Swedish
#' road.
#'
#' @section M. S. Bartlett's notes:
#'
#' Analyse the above data with a view to examining:
#' \describe{
#' \item{i}{whether the times of passing constitute a Poisson process;}
#' \item{ii}{if not, whether some form of "bunching" or "clustering" seems to be
#' present.}
#' }
#' Possible analyses include:
#' \describe{
#' \item{a}{testing the homogeneity of the consecutive random time-intervals,
#' by means
#' of a partitioning of the degrees of freedom for the total (approximate)
#' \eqn{\chi^2};}
#' \item{b}{testing the homogeneity of counts in consecutive fixed time-intervals,
#' choosing
#' an appropriate interval, and partitioning the degrees of freedom corresponding
#' to the total dispersion by means of an analysis of variance;}
#' \item{c}{testing the correlation between the consecutive random
#' time-intervals;}
#' \item{d}{examining the overall distribution of counts in fixed time-intervals;}
#' \item{e}{examining the overall distribution of the consecutive random
#' time-intervals}
#' }
#' You should undertake at least sufficient of these to answer the questions asked.
#'
#' @format A numeric vector representing time points in seconds
#'
#' @source The Spectral Analysis of Point Processes (p. 280), M. S. Bartlett, 1963
#'
#' Also mentioned in: \cr
#' Statistical Estimation of Density Functions (p. 252), M. S. Bartlett, 1963 \cr
#' A Simplified Monte Carlo Significance Test Procedure (p. 583),
#' Adery C. A. Hope, 1968
#'
#' @examples
#' cpgram(diff(bartlett))
#'
#' bartlett2 <- bartlett - bartlett[1]
#'
#' x <- rep(0, tail(bartlett2, 1)*10)
#' x[bartlett2*10] <- 1
#'
#' par(mfrow=c(2, 1), mar=c(2, 3, 1, 1))
#' plot(x, type="l", ann=FALSE)
#' lines(cumsum(x)/sum(x), col="red", lwd=2)
#'
#' sp <- spectrum(x, main="", xlim=c(0, 0.1), ylim=c(1e-3, 0.04))
#' spec <- predict(loess(sp$spec[1:3000] ~ sp$freq[1:3000], span=0.15), se=TRUE)
#' lines(sp$freq[1:3000], spec$fit, col="red", lwd=2)
#' lines(sp$freq[1:3000], spec$fit - qt((0.99 + 1)/2, spec$df)*spec$se,
#' lty=1, col="lightblue")
#' lines(sp$freq[1:3000], spec$fit + qt((0.99 + 1)/2, spec$df)*spec$se,
#' lty=1, col="lightblue")
"bartlett"
#' 2018 MarbleLympics speed skating times
#'
#' @description Intermediate and total times for all 16 runs, arranged by lane and
#' heat number.
#'
#' @format A list containing two data.frames, one for each lane. Columns are heat
#' and rows are time checks in seconds.
#'
#' @source https://www.youtube.com/watch?v=fA-O6f_jArk
#'
#' @examples
#' tt <- t(do.call(cbind, speedskate))
#' pairs(tt)
#' cor(tt)
#' outer(
#' colnames(tt),
#' colnames(tt),
#' Vectorize(function(i,j) cor.test(tt[,i],tt[,j])$p.value)
#' )
"speedskate"
#' Mathematical constants
#'
#' Various mathemathical constants available as global variables
#'
#' \describe{
#' \item{\code{e}}{Euler's number}
#' \item{\code{pi}}{Archimedes' number, the circle constant}
#' \item{\code{phi}}{Golden ratio}
#' \item{\code{feig1}}{Feigenbaum's first constant, \eqn{\delta};
#' bifurcation velocity}
#' \item{\code{feig2}}{Feigenbaum's second constant, \eqn{\alpha};
#' reduction parameter}
#' \item{\code{eu.ma}}{Euler–Mascheroni constant}
#' \item{\code{khin}}{Khintchine's constant}
#' \item{\code{glai.kin}}{Glaisher-Kinkelin constant}
#' }
#'
#' @name math_constants
#'
#' @usage NULL
#'
#' @aliases
#' e pi phi feig1 feig2 eu.ma khin glai.kin
"e"
#' High precision mathematical constants
#'
#' Character strings representing various mathemathical constants to ~100
#' decimal points
#'
#' \describe{
#' \item{\code{e.char}}{Euler's number}
#' \item{\code{pi.char}}{Archimedes' number, the circle constant}
#' \item{\code{phi.char}}{Golden ratio}
#' \item{\code{feig1.char}}{Feigenbaum's first constant, \eqn{\delta};
#' bifurcation velocity}
#' \item{\code{feig2.char}}{Feigenbaum's second constant, \eqn{\alpha};
#' reduction parameter}
#' \item{\code{eu.ma.char}}{Euler–Mascheroni constant}
#' \item{\code{khin.char}}{Khintchine's constant}
#' \item{\code{glai.kin.char}}{Glaisher-Kinkelin constant}
#' }
#'
#' @name math_constants_char
#'
#' @usage NULL
#'
#' @aliases
#' e.char pi.char phi.char feig1.char feig2.char eu.ma.char khin.char glai.kin.char
"e.char"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.