betashrink: Wavelet shrinkage under beta prior.

Description Usage Arguments Value Examples

View source: R/betashrink.R

Description

Performs bayesian shrinkage under beta prior on empirical wavelet coefficients.

Usage

1
betashrink(d, alpha, a, b, m, s)

Arguments

d

The empirical wavelet coefficients vector.

alpha

The weight of the point mass at zero function of the prior.

a

The shape parameter of the beta prior.

b

The shape parameter of the beta prior.

m

The upper value of the beta prior support.

s

The standard deviation of the normal random noise.

Value

The shrunk wavelet coefficients vector.

Examples

1
betashrink(c(0.5,1,2),0.9,2,3,10,1)

Alexestat/bayesShrink documentation built on Oct. 6, 2020, 12:42 a.m.