# Printing Methods for the different estimation procedures ------------------------------
print.raedda_t <- function(x, ...)
{
cat("\n")
txt <- paste(" ", "Robust and Adaptive Gaussian finite mixture model for classification \n")
txt_1 <- paste("Transductive Approach")
sep <- paste0(rep("-", max(nchar(txt)) + 1),
collapse = "")
cat(sep, "\n")
cat(txt)
cat(sep, "\n")
cat("\n")
cat(txt_1, "\n")
cat( paste0(" ", "Model = ", x$Best$model_name, "\n") )
cat( paste0(" ", "G = ", x$Best$G, "\n") )
cat( paste0(" ", "Training trimming level = ", x$Best$train$alpha_train, "\n") )
cat( paste0(" ", "Test trimming level = ", x$Best$test$alpha_test, "\n") )
cat( paste0(" ", "Log-likelihood= ", round(x$Best$ll, 3), "\n") )
cat( paste0(" Robust BIC= ", round(x$Best$bic, 3), "\n") )
}
print.raedda_i <- function(x, ...)
{
cat("\n")
txt <- paste(" ", "Robust and Adaptive Gaussian finite mixture model for classification \n")
txt_1 <- paste("Inductive Approach")
sep <- paste0(rep("-", max(nchar(txt)) + 1),
collapse = "")
cat(sep, "\n")
cat(txt)
cat(sep, "\n")
cat("\n")
cat(txt_1, "\n")
cat( paste0(" ", "Model = ", x$discovery_phase$Best$model_name, "\n") )
cat( paste0(" ", "G = ", x$discovery_phase$Best$G, "\n") )
cat( paste0(" ", "Training trimming level = ", x$learning_phase$Best$train$alpha_train, "\n") )
cat( paste0(" ", "Discovery trimming level = ", x$discovery_phase$Best$test$alpha_discovery, "\n") )
cat( paste0(" ", "Log-likelihood= ", round(x$discovery_phase$Best$ll, 3), "\n") )
cat( paste0(" Robust BIC= ", round(x$discovery_phase$Best$bic, 3), "\n") )
}
print.redda <- function(x, ...)
{
cat("\n")
txt <- paste(" ", "Robust and Adaptive Gaussian finite mixture model for classification \n")
txt_1 <- paste("Inductive Approach: Learning phase")
sep <- paste0(rep("-", max(nchar(txt)) + 1),
collapse = "")
cat(sep, "\n")
cat(txt)
cat(sep, "\n")
cat("\n")
cat(txt_1, "\n")
cat( paste0(" ", "Model = ", x$Best$model_name, "\n") )
cat( paste0(" ", "G = ", x$Best$G, "\n") )
cat( paste0(" ", "Training trimming level = ", x$Best$train$alpha_train, "\n") )
cat( paste0(" ", "Log-likelihood= ", round(x$Best$ll, 3), "\n") )
cat( paste0(" Robust BIC= ", round(x$Best$bic, 3), "\n") )
}
print.raedda_d <- function(x, ...)
{
cat("\n")
txt <- paste(" ", "Robust and Adaptive Gaussian finite mixture model for classification \n")
txt_1 <- paste("Inductive Approach: Discovery phase")
sep <- paste0(rep("-", max(nchar(txt)) + 1),
collapse = "")
cat(sep, "\n")
cat(txt)
cat(sep, "\n")
cat("\n")
cat(txt_1, "\n")
cat( paste0(" ", "Model = ", x$Best$model_name, "\n") )
cat( paste0(" ", "G = ", x$Best$G, "\n") )
cat( paste0(" ", "Discovery trimming level = ", x$Best$test$alpha_discovery, "\n") )
cat( paste0(" ", "Log-likelihood= ", round(x$Best$ll, 3), "\n") )
cat( paste0(" Robust BIC= ", round(x$Best$bic, 3), "\n") )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.