PELT = function(sumstat, pen=0, cost_func = "mean.norm", shape = 1, minseglen = 1){
# function that uses the PELT method to calculate changes in mean where the segments in the data are assumed to be Normal
n = length(sumstat[,1])-1
m = length(sumstat[1,])
tol = 0
if(cost_func == "mean.norm" || cost_func == "var.norm" || cost_func == "meanvar.norm" || cost_func == "meanvar.exp" || cost_func == "meanvar.gamma" || cost_func == "meanvar.poisson"){
MBIC = 0
}else{
MBIC = 1
}
if(n<2){stop('Data must have at least 2 observations to fit a changepoint model.')}
storage.mode(sumstat) = 'double'
error=0
lastchangelike = array(0,dim = n+1)
bicvalues = array(0,dim = n+1)
optimal = array(0,dim = n+1)
lastchangecpts = array(0,dim = n+1)
numchangecpts = array(0,dim = n+1)
cptsout=rep(0,n) # sets up null vector for changepoint answer
storage.mode(cptsout)='integer'
answer=list()
answer[[7]]=1
on.exit(.C("FreePELT",answer[[7]]))
storage.mode(lastchangelike) = 'double'
storage.mode(bicvalues) = 'double'
storage.mode(optimal) = 'integer'
storage.mode(lastchangecpts) = 'integer'
storage.mode(numchangecpts) = 'integer'
min = 0
max = 0
answer=.C('PELT', cost_func = cost_func, sumstat = sumstat, n = as.integer(n), m = as.integer(m), pen = as.double(pen), cptsout = cptsout, error = as.integer(error), shape = as.double(shape), minorder = as.integer(min), optimalorder = optimal, maxorder = as.integer(max), minseglen = as.integer(minseglen), tol = as.double(tol), lastchangelike = lastchangelike, bicvalues = bicvalues, lastchangecpts = lastchangecpts, numchangecpts = numchangecpts, MBIC = as.integer(MBIC))
if(answer$error>0){
stop("C code error:",answer$error,call.=F)
}
return(list(lastchangecpts=answer$lastchangecpts,cpts=sort(answer$cptsout[answer$cptsout>0]), lastchangelike=answer$lastchangelike, ncpts=answer$numchangecpts))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.