# Johns-Hopkins format
library(dplyr)
library(glue)
require(lubridate)
require(stringr)
x = readr::read_csv("https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv")
x$data <- lubridate::as_date(x$data)
x$codice_regione <- as.numeric(x$codice_regione)
level_tst <- levels(factor(x$denominazione_regione[which(x$codice_regione == 4)]))
x$codice_regione[which(x$denominazione_regione == level_tst[2])] = -1
x <- x %>%
group_by(codice_regione) %>%
arrange(data) %>%
mutate(denominazione_regione = first(denominazione_regione)) %>%
ungroup()
x <- x %>%
select(
data,
denominazione_regione,
stato,
lat,
long,
totale_casi,
dimessi_guariti,
deceduti
) %>%
rename(
`Province/State` = "denominazione_regione",
Lat = "lat",
Long = "long"
) %>%
mutate(
data = str_trim(glue("{month(data)}/{day(data)}/{substr(year(data), 3, 4)}"))
) %>%
rename(`Country/Region` = stato) %>%
mutate(`Country/Region` = "Italia")
x_confirmed <- x %>%
select(-dimessi_guariti, -deceduti) %>%
mutate(Lat = first(Lat), Long = first(Long)) %>%
ungroup() %>%
group_by(`Province/State`, `Country/Region`) %>%
tidyr::pivot_wider(id_cols = c(`Province/State`, `Country/Region`, "Lat", "Long"), names_from = data, values_from = totale_casi) %>% mutate_all(funs(tidyr::replace_na(.,0))) %>%
bind_rows(readr::read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")) %>%
filter(`Country/Region` != "Italy") %>%
group_by(`Province/State`, `Country/Region`) %>%
slice_head() %>%
.[,c(1:4, 4 + order(as.Date(names(.)[-c(1:4)],format="%m/%d/%Y")))]
readr::write_csv(x_confirmed, "johns-hopkins-format/time_series_19-covid-Confirmed_Italy.csv")
x_deaths <- x %>%
select(-dimessi_guariti, -totale_casi) %>%
tidyr::pivot_wider(id_cols = c(`Province/State`, `Country/Region`, "Lat", "Long"), names_from = data, values_from = deceduti) %>% mutate_all(funs(tidyr::replace_na(.,0))) %>%
bind_rows(readr::read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv")) %>%
filter(`Country/Region` != "Italy") %>%
group_by(`Province/State`, `Country/Region`, Lat, Long) %>%
slice_head() %>%
.[,c(1:4, 4 + order(as.Date(names(.)[-c(1:4)],format="%m/%d/%Y")))]
readr::write_csv(x_deaths, "johns-hopkins-format/time_series_19-covid-Deaths_Italy.csv")
x_recovered <- x %>%
select(-deceduti, -totale_casi) %>%
tidyr::pivot_wider(id_cols = c(`Province/State`, `Country/Region`, "Lat", "Long"), names_from = data, values_from = dimessi_guariti) %>% mutate_all(funs(tidyr::replace_na(.,0)))
readr::write_csv(x_recovered, "johns-hopkins-format/time_series_19-covid-Recovered_Italy.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.