# Process Gaussian skewed
library(dplyr)
library(forcats)
library(ggplot2)
library(ggalt)
load("theta_df.RData")
load("stan_df.RData")
theta_df_2 <- theta_df %>% filter(time == max(time)) %>% select(-time) %>% mutate(type = "ABCSMC2")
theta_df_2$parameter <- forcats::fct_recode(theta_df_2$parameter, sigma = "1", gamma = "2")
stan_df_2 <- stan_df %>%
select(-seed) %>%
tidyr::gather(key = parameter, value = value, -type, -weight)
combined_df <- bind_rows(theta_df_2, stan_df_2)
theta_of_interest <- combined_df
limits <- data.frame(parameter = rep(c("sigma","gamma"), each = 2), value = c(c(0.1, 0.5), c(0.2, 4)), weight = 1e-6, type = NA)
theta_of_interest <- bind_rows(theta_of_interest, limits)
theta_of_interest <- theta_of_interest %>% mutate(parameter = factor(parameter, levels = c("sigma","gamma")))
true_theta <- data.frame(parameter = factor(c("sigma", "gamma")), value = c(0.25, 2))
parameter_plot <- ggplot(theta_of_interest) +
aes(x = value, weights = weight, color = factor(type)) +
ggplot2::scale_color_manual(values = c("#F8766D", "#00BFC4", NA), na.translate = FALSE) +
stat_density(bw = 0.04, geom = "line", position="identity") +
facet_wrap(~parameter, labeller = label_parsed, scales = "free") +
geom_vline(data = true_theta, mapping = aes(xintercept = value), col = "red") +
xlab("Parameter value") +
scale_y_continuous(expand = expand_scale(mult = c(0,0.05))) +
ggthemes::theme_few() +
theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank()) +
ylab("ABC posterior density") +
guides(color=guide_legend(title="Bayesian sampler"))
ggplot2::ggsave(filename = "parameter_Gaussian.pdf", plot = parameter_plot, width = 10, height = 5, scale = 0.7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.