# # ////////////
# # Parallelising plots ----
#
# # Get numeric variables:
# num_vars <- list()
# for (i in colnames(data_f)) {
# if (epi_clean_cond_numeric(data_f[[i]])) {
# num_vars <- c(num_vars, i)
# }
# }
# num_vars
# # ////////////
#
#
# # ////////////
#
# # ===
# # Boxplot for one ----
# epi_plot_box(df = data_f, var_y = 'EDAD')
# # ===
#
# # ===
# # Boxplots for all in a loop ----
# # i <- "EDAD"
# num_list <- epi_plot_list(vars_to_plot = num_vars)
# for (i in names(num_list)) {
# num_list[[i]] <- epi_plot_box(df = data_f, var_y = i)
# }
# # ===
#
# # ===
# # Save plots in a loop ----
# # Plot 4 per page or so:
# per_file <- 4
# jumps <- seq(1, length(num_list), per_file)
# length(jumps)
#
# # i <- 2
# for (i in jumps) {
# # infile_prefix
# file_n <- 'plots_box'
# suffix <- 'pdf'
# outfile <- sprintf(fmt = '%s/%s_%s.%s', infile_prefix, file_n, i, suffix)
# # outfile
# start_i <- i
# end_i <- i + 3
# my_plot_grid <- epi_plots_to_grid(num_list[start_i:end_i])
# epi_plot_cow_save(file_name = outfile, plot_grid = my_plot_grid)
# }
# # ===
# # ////////////
#
# # ////////////
# # ===
# # Boxplots for all in parallel ----
# # TO DO:
# # test functions, add code tests, test examples
# # generate_bar_plot_list <- function(vars_to_plot,
# # data,
# # custom_palette,
# # n_cores = num_cores
# # ) {
# # library(parallel)
# # bar_list <- mclapply(vars_to_plot, generate_bar_plot, data = data, custom_palette = custom_palette, mc.cores = n_cores)
# # # mclapply() should run with shared memory on *nix
# # names(bar_list) <- vars_to_plot
# # bar_list
# # }
# # ===
#
# # ===
# # Save all in parallel ----
# save_bar_plot_grids <- function(plot_list,
# results_subdir,
# file_n = "plots_bar",
# per_file = 4, # per page
# suffix = "pdf",
# n_cores = num_cores
# ) {
# library(cowplot) # For plot grids
# library(parallel)
#
# jumps <- seq(1, length(plot_list), per_file)
#
# save_plots <- function(start_i) {
# end_i <- min(start_i + per_file - 1, length(plot_list))
# plot_grid <- plot_grid(plotlist = plot_list[start_i:end_i], ncol = 2)
#
# outfile <- sprintf(fmt = '%s/%s_%s.%s', results_subdir, file_n, start_i, suffix)
# ggsave(outfile, plot_grid, device = "pdf", width = 15, height = 15)
# }
# # mclapply() should run with shared memory on *nix
# mclapply(jumps, save_plots, mc.cores = n_cores)
# }
# # ===
# # ////////////
#
#
# # ////////////
# # How to run ----
#
# # ===
# # Input data and variables
# data_f <- data.frame() # Your data goes here
# results_subdir <- "path/to/results" # Ensure this directory exists
# fact_cols <- c("SEXO", "OTHER_FACTOR") # Replace with your factor column names
# custom_palette <- c("red", "blue") # Replace with your custom palette
#
# # Detect number of cores
# num_cores <- detectCores() - 1
# # ===
#
# # ===
# # Step 1: Generate bar plots in parallel
# bar_list <- generate_bar_plot_list(vars_to_plot = fact_cols,
# data = data_f,
# custom_palette = custom_palette,
# n_cores = num_cores
# )
# # ===
#
# # ===
# # Step 2: Save bar plots to files
# save_bar_plot_grids(plot_list = bar_list,
# results_subdir = results_subdir,
# per_file = 4, # per page,
# n_cores = num_cores
# )
# # ===
# # ////////////
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.