Description Usage Arguments Value Author(s) Examples
This function applyes the Digital Alignment Tool (DTA) on a disarticulated model using a reference sample
1 2 |
RM_sample |
3D array: 3D landmark configurations of the reference sample |
mod_1 |
numeric vector: vector containing the position of which landmarks belong to the first module |
mod_2 |
numeric vector: vector containing the position of which landmarks belong to the second module |
pairs_1 |
matrix: a X x 2 matrix containing the indices of right and left landmarks of the first module |
pairs_2 |
matrix: a X x 2 matrix containing the indices of right and left landmarks of the second module |
DM_mesh_1 |
mesh3d: mesh of the disarticulated model (first module) |
DM_mesh_2 |
mesh3d: mesh of the disarticulated model (second module) |
DM_set_1 |
matrix: 3D landmark set of the first module acquired on the disarticulated model |
DM_set_2 |
matrix: 3D landmark set of the second module acquired on the disarticulated model |
method |
character: specify method to be used to individuate the best DTA ("euclidean" or "procrustes") |
AM_mesh mesh3d: mesh of the aligned model
AM_set matrix: landmark configuration of the aligned model
AM_id character: name of the item of the reference sample resulted as best DTA
AM_SF_1 numeric: scale factor used to scale the reference set (first module)
AM_SF_2 numeric: scale factor used to scale the reference set (second module)
distance numeric: distance between the landmark configuration of the aligned and the reference model
tot_proc numeric vector: procrustes distances between aligned and reference models (all DTAs)
tot_eucl numeric vector: euclidean distances between aligned and reference models (all DTAs)
setarray 3D array: landmark configurations of the disarticulated model aligned on each item of the reference sample
Antonio Profico, Alessio Veneziano, Marina Melchionna, Pasquale Raia
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ## Load and plot the disarticulated model of the Homo sapiens case study
library(compositions)
library(rgl)
data(DM_base_sur)
data(DM_face_sur)
open3d()
wire3d(DM_base_sur,col="white")
wire3d(DM_face_sur,col="white")
## Load the landmark configurations associated to the DM
data(DM_set)
## Load the reference sample
data(RMs_sets)
## Define the landmarks belonging to the first and second module
mod_1<-c(1:17) #cranial base
mod_2<-c(18:32) #facial complex
## Define the paired landmarks for each module (optional symmetrization process)
pairs_1<-cbind(c(4,6,8,10,12,14,16),c(5,7,9,11,13,15,17))
pairs_2<-cbind(c(23,25,27,29,31),c(24,26,28,30,32))
## Run DTA
ex.dta<-dta(RM_sample=RMs_sets, mod_1=mod_1, mod_2=mod_2, pairs_1=pairs_1, pairs_2=pairs_2,
DM_mesh_1=DM_base_sur,DM_mesh_2=DM_face_sur, DM_set_1= DM_set[mod_1,], DM_set_2=DM_set[mod_2,])
## Print the name of the best RM
ex.dta$AM_id
## Save the mesh and the landmark set of the AM
AM_mesh<-ex.dta$AM_mesh
AM_set<-ex.dta$AM_set
## Plot the aligned 3D model
library(compositions)
library(rgl)
open3d()
wire3d(AM_mesh,col="white")
plot3D(AM_set,bbox=FALSE,add=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.