server = function(input, output, session) {
output$summary.shock <-
renderPrint({ summary(ShockAbsorber.ld)
})
output$table.shock <-
DT::renderDataTable({DT::datatable(ShockAbsorber.ld,
options = list(pageLength = 10))
})
output$eventplot.shock <-
renderPlot({
if (input$PLOT_3 == "Event Plot")
event.plot(ShockAbsorber.ld)
if (input$PLOT_3 == "Histogram")
hist(Response(ShockAbsorber.ld),
probability = TRUE,
col = 1,
border = "white",
main = "",
xlab = attr(ShockAbsorber.ld,"time.units"))
})
output$cdfplot.shock <-
renderPlot({
plot(ShockAbsorber.ld,
distribution = input$DIST_3,
conf.level = as.numeric(input$CI_3),
band.type = input$BT_3)
})
output$mleplot <-
renderPlot({
if (input$mleplot == "CDF Plot")
mleprobplot(ShockAbsorber.ld,
distribution = input$mledist,
param.loc = input$paramloc )
if (input$mleplot == "Hazard Plot")
mlehazplot(ShockAbsorber.ld,
distribution = input$mledist,
param.loc = input$paramloc)
if (input$mleplot == "Compare CDF Plots")
compare.mleprobplot(ShockAbsorber.ld,
main.distribution = input$mledist,
compare.distribution = input$mlecomp)
})
output$mlemirror <-
codemirrorR::renderCodemirror({codemirrorR::codemirror(mode = 'r', doc = "
## The only new function in this app is `compare.mleprobplot( )`
## This function is used to compare best-fit members of two or more
## distribution families
##
## The code used in this app to compare distributions is shown below
## Note that the compare.dictribution argument will accept a vector of
## multiple distributions.
ShockAbsorber.ld <- frame.to.ld(SMRD::shockabsorber,
response.column = 1,
censor.column = 3,
data.title = 'Shock Absorber Data (Both Failure Modes)',
time.units = 'Kilometers')
compare.mleprobplot(ShockAbsorber.ld,
main.distribution = 'lognormal',
compare.distribution = c('Weibull'),
band.type = 'pointwise')
")
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.