Description Usage Arguments Value Examples
scNPF-propagation for imputing dropouts and correcting expression expression measurements.scNPF-propagation involves a network propagation process based on random walk with restart (RWR) on a given gene-gene interaction network to obtain a distribution for each node (gene), which captures its relevance to all other genes in the network.
1 2 |
x |
A expression count matrix. The rows correspond to genes and the columns correspond to cells. |
network |
A adjacency matrix contation gene-gene interaction network. User can use priori mode or context mode. For priori mode, users can use publicly available molecular networks. In this package, we provided three human gene-gene interaction networks, including String, HumanNet and an integrated network. For context mode (default), a context-specific gene-gene network is constructed from the scRNA-seq data by WGCNA package. |
qt.gene |
A numeric value between 0 and 1 (default: 0.4) indicating the
top percent of expressed genes to be reserved for buliding a context-specific
gene-gene network. Used only if |
qt.cell |
A numeric value between 0 and 1 (default: 0.5) indicating the
top percent of expressed cells to be reserved for buliding a context-specific
gene-gene network. Used only if |
nThreads |
The number of cores to use. Default is 1. |
gammma |
A number between 0 and 1 (default: 0.5). |
A network-smoothed gene expression matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #Loading example scRNA-seq data.
load(system.file("data","yan.Rdata",package = "scNPF"))
#Testing with all genes
exp.data <- yan$data
#Or testing with paritial genes
#exp.data <- yan$data[1:2000,]
##For context mode
context.data <- scNPF.pro(x=exp.data, network="context",nThreads=8)
dim(context.data)
dim(exp.data)
context.data[1:5,1:3]
exp.data[1:5,1:3]
##For priori mode
##Using String network
load(system.file("data","string.Rdata",package = "scNPF"))
string.data <- scNPF.pro(x=exp.data, network=string,nThreads=8)
##Using HumanNet network
load(system.file("data","humannet.Rdata",package = "scNPF"))
hm.data <- scNPF.pro(x=exp.data,network=humannet,nThreads=8)
##Using integrated network
load(system.file("data","integrated.Rdata",package = "scNPF"))
inter.data <- scNPF.pro(x=exp.data,network=INet,nThreads=8)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.