scNPF.fus: Similarity matrix Construction

Description Usage Arguments Value Examples

View source: R/scNPF_fus.R

Description

constructs a sample-similarity network for each propagated expression matrix and then integrates these networks into a single cell-cell similarity network based on a nonlinear combination method.

Usage

1
scNPF.fus(data, K = 20, alpha = 0.5, T = 10)

Arguments

data

A list stored network-smoothed gene expression matrix with two length.

K

Number of neighbors in K-nearest neighbors part of the algorithm.

T

Number of iterations for the diffusion process.

alpah

Variance for local model.

Value

A consensus similarity matrix.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
##Loading example data
load(system.file("data","yan.Rdata",package = "scNPF"))
exp.data <- yan$data[1:2000,]

##Smoothed gene expression based on priori mode
##Using String network.
load(system.file("data","string.Rdata",package = "scNPF"))
string.data <- scNPF.pro(x=exp.data, network=string)

##Smmothed gene expression based on context mode
context.data<- scNPF.pro(x=exp.data, network="context",qt.gene=0.9,qt.cell=0.9)

##Construction a cell-by-cell similarity matrix.
similarity <- scNPF.fus(data=list(string=string.data,context=context.data))

BMILAB/scNPF documentation built on Nov. 19, 2020, 1:41 a.m.