fit_HOME | R Documentation |
This function infers parameters (substitution rate and number of host-switches) of HOME for one given OTU ("index").
fit_HOME(index,name,nb_tree=10000,lambda=c(1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,25),
nb_cores=1,tolerance=0.05,raref=FALSE,...)
index |
the name of the particular index from name_index (e.g. name of one OTU) |
name |
the name of the run |
nb_tree |
a number of tree for Monte Carlo estimation of the number of switches (a low value will give inaccurate results whereas a high value will increase the computation time) |
lambda |
a vector of integer values of number of switches to test during estimations |
raref |
if TRUE rarefactions on the number of trees are performed (i.e. to test if nb_tree is large enough). thus their results are vizualizable using the function output_results_HOME. |
tol |
the desired accuracy of the optimize function (to estimate mu). A low value will give a more accurate estimate, but will take more computational time. |
nb_cores |
a number of cores to run the analyses (ideally, it should be equal to the length of lambda for an optimal speed) |
... |
optional - other arguments to be passed. |
The functions prepare_data_HOME and simul_bank_tree must be run before. See reference for more details.
The function infers the parameters (subtitution rate and number of switches) for one given index. Use the function output_results to interpret them.
Benoit Perez-Lamarque
Perez-Lamarque B, Morlon H (2019). Characterizing symbiont inheritance during host-microbiota evolution: Application to the great apes gut microbiota. Molecular Ecology Resources 19:1659-1671.
sim_microbiota
,
prepare_data_HOME
,
simul_bank_tree
,
output_results_HOME
,
model_selection_HOME
,
HOME_model
# Some examples may take a little bit of time. Be patient!
# Simulate 3 microbial alignments on a host tree
# (1 is vertically transmitted, 1 is transmitted with 5 host-switches,
# and 1 is environmentally acquired)
name="example_simulation"
name_index=c("Simul_1","Simul_2","Simul_3")
#sim_microbiota(name, name_index, simul=c(0,5,"indep"), n=10, mu=1, N=300, proportion_variant=0.1)
# Inference
# Prepare the data (format, substitution model...)
#for (i in 1:3){prepare_data_HOME(iter=i,name,name_index)}
# Simulate the bank of trees
#for (ksi in 1:length(seq(1,25))){simul_bank_tree(ksi,name,nb_tree=1000,
#lambda=seq(1,25),seed=1)}
# Infer the parameters
#for (i in 1:3){fit_HOME(index=name_index[i],name,nb_tree=1000,
#lambda=seq(1,25),nb_cores=1)}
# Plot the first outputs
#for (i in 1:3){output_results_HOME(iter=i,name,name_index,lambda=seq(1,25),nb_tree=1000,
#empirical=FALSE,randomize=FALSE,raref=FALSE)}
# Perform the model selection
#for (i in 1:3){model_selection_HOME(index=name_index[i],name,nb_tree=1000,
#lambda=seq(1,25),nb_cores=1,seed=1)}
# Plot the final outputs
#for (i in 1:3){output_results_HOME(iter=i,name,name_index,lambda=seq(1,25),nb_tree=1000,
#empirical=FALSE,randomize=TRUE,raref=FALSE)}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.