A package to evaluate missing data, simulate data matrices and missingness, evaluate multiple imputation methods and return statistics on these and finally methods to impute utilizing multiple standard imputation approaches. Novel imputation methodologies which utilize an imputation approach with data that uses biological or technical replication are also included (as described in ***paper***). ICC evaluation methods are included specifically included to suit researchers working with data with biological or technical replicates. Source code was written by the authors with code copied and modified from the following github packages: https://github.com/Tirgit/missCompare, https://github.com/WandeRum/GSimp (Wei, R., Wang, J., Jia, E., Chen, T., Ni, Y., & Jia, W. (2017). GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies. PLOS Computational Biology) https://github.com/juuussi/impute-metabo Kokla, M., Virtanen, J., Kolehmainen, M. et al. Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study. BMC Bioinformatics 20, 492 (2019). https://doi.org/10.1186/s12859-019-3110-0
Package details |
|
---|---|
Author | Tarek Firzli <trfirzli@gmail.com>, Trenton Davis <tjdavi18@asu.edu>, Emily Higgins <ehiggins@asu.edu> |
Maintainer | Tarek Firzli <trfirzli@gmail.com> |
License | GNU General Public License v3 |
Version | 0.1.0 |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.