View source: R/missing_Eval_functions.R
detect.miss.MNAR.MAR | R Documentation |
detect.miss.MNAR.MAR It detects if the missigness depends on other varibales Correlates an indicator matrix (0 not missing , 1 missing) with the original data that can help determine if variables tend to be missing together (MAR) or not (MCAR). Kabacoff, Robert I. R in Action. manning, 2010. From juuussi/impute-metabo
detect.miss.MNAR.MAR(data, alpha = 0.05, correlation_method)
data |
, matrix with missing values |
alpha, |
significance level , default is 0.05 |
results list of vectors : MissingVar = vector containing the columns numbers of the data matrix with missing values that are less than 80 PairsCorVar = data frame containing the pairs of correlated variables in the data matrix, MAR_MNAR = vector containing the columns numbers of the data matrix with MAR or MNAR missingness ExcludedVar = vector containing the columns numbers of the data matrix with missing values that are more than 80
marietta <-detect.miss.MNAR.MAR (miss_data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.