casl_lenet: Compute linear elastic net using coordinate descent.

Description Usage Arguments Value Author(s) References

View source: R/casl.R

Description

Compute linear elastic net using coordinate descent.

Usage

1
2
casl_lenet(X, y, lambda, alpha = 1, b = matrix(0, nrow = ncol(X), ncol
  = 1), tol = 1e-05, maxit = 50L, W = rep(1, length(y))/length(y))

Arguments

X

A numeric data matrix.

y

Response vector.

lambda

The penalty term.

alpha

Value from 0 and 1; balance between l1/l2 penalty.

b

Current value of the regression vector.

tol

Numeric tolerance parameter.

maxit

Integer maximum number of iterations.

W

Vector of sample weights.

Value

Regression vector beta of length ncol(X).

Author(s)

Taylor Arnold, Michael Kane, Bryan Lewis.

References

Taylor Arnold, Michael Kane, and Bryan Lewis. A Computational Approach to Statistical Learning. Chapman & Hall/CRC Texts in Statistical Science, 2019.


BillyTian/bis557 documentation built on Dec. 19, 2020, 7:30 a.m.