#' Soft threshold function.
#'
#' @param a Numeric vector of values to threshold.
#' @param b The soft thresholded value.
#'
#' @return Numeric vector of the soft-thresholded values of a.
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_util_soft_thresh <-
function(a, b)
{
a[abs(a) <= b] <- 0
a[a > 0] <- a[a > 0] - b
a[a < 0] <- a[a < 0] + b
a
}
#' Update beta vector using coordinate descent.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param lambda The penalty term.
#' @param alpha Value from 0 and 1; balance between l1/l2 penalty.
#' @param b A vector of warm start coefficients for the algorithm.
#' @param W A vector of sample weights.
#'
#' @return A matrix of regression vectors with ncol(X) columns
#' and length(lambda_vals) rows.
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_lenet_update_beta <-
function(X, y, lambda, alpha, b, W)
{
WX <- W * X
WX2 <- W * X^2
Xb <- X %*% b
for (i in seq_along(b))
{
Xb <- Xb - X[, i] * b[i]
b[i] <- casl_util_soft_thresh(sum(WX[,i, drop=FALSE] *
(y - Xb)),
lambda*alpha)
b[i] <- b[i] / (sum(WX2[, i]) + lambda * (1 - alpha))
Xb <- Xb + X[, i] * b[i]
}
b
}
#' Compute linear elastic net using coordinate descent.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param lambda The penalty term.
#' @param alpha Value from 0 and 1; balance between l1/l2 penalty.
#' @param b Current value of the regression vector.
#' @param tol Numeric tolerance parameter.
#' @param maxit Integer maximum number of iterations.
#' @param W Vector of sample weights.
#'
#' @return Regression vector beta of length ncol(X).
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_lenet <-
function(X, y, lambda, alpha = 1, b=matrix(0, nrow=ncol(X), ncol=1),
tol = 1e-5, maxit=50L, W=rep(1, length(y))/length(y))
{
for (j in seq_along(lambda))
{
if (j > 1)
{
b[,j] <- b[, j-1, drop = FALSE]
}
# Update the slope coefficients until they converge.
for (i in seq(1, maxit))
{
b_old <- b[, j]
b[, j] <- casl_lenet_update_beta(X, y, lambda[j], alpha,
b[, j], W)
if (all(abs(b[, j] - b_old) < tol)) {
break
}
}
if (i == maxit)
{
warning("Function lenet did not converge.")
}
}
b
}
#' Check current KKT conditions for regression vector.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param b Current value of the regression vector.
#' @param lambda The penalty term.
#'
#' @return A logical vector indicating where the KKT conditions
#' have been violated by the variables that are currently zero.
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_lenet_check_kkt <-
function(X, y, b, lambda)
{
resids <- y - X %*% b
s <- apply(X, 2, function(xj) crossprod(xj, resids)) /
lambda / nrow(X)
# Return a vector indicating where the KKT conditions have been
# violated by the variables that are currently zero.
(b == 0) & (abs(s) >= 1)
}
#' Update beta vector using KKT conditions.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param b Current value of the regression vector.
#' @param lambda The penalty term.
#' @param active_set Logical index of the active set of variables.
#' @param maxit Integer maximum number of iterations.
#'
#' @return A list indicating the new regression vector and active set.
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_lenet_update_beta_kkt <-
function(X, y, b, lambda, active_set, maxit=10000L)
{
if (any(active_set)) {
b[active_set, ] <- casl_lenet(X[, active_set, drop = FALSE],
y, lambda, 1,
b[active_set, , drop = FALSE],
maxit = maxit)
}
kkt_violations <- casl_lenet_check_kkt(X, y, b, lambda)
while(any(kkt_violations))
{
active_set <- active_set | kkt_violations
b[active_set, ] <- casl_lenet(X[, active_set, drop = FALSE],
y, lambda, 1,
b[active_set, , drop = FALSE],
maxit = maxit)
kkt_violations <- casl_lenet_check_kkt(X, y, b, lambda)
}
list(b=b, active_set=active_set)
}
#' Apply coordinate descent screening rules.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param lambda The penalty term.
#' @param b A matrix of warm start coefficients for the algorithm.
#' @param maxit Integer maximum number of iterations.
#'
#' @return Named list of parameters for use in the lenet algorithm.
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_lenet_screen <-
function(X, y, lambda, b=matrix(0, nrow=ncol(X),
ncol=length(lambda)),
maxit = 10000L)
{
a0 <- mean(y)
y <- y - mean(y)
X <- scale(X)
center <- attributes(X)[['scaledcenter']]
scale <- attributes(X)[['scaledscale']]
keep_cols <- which(scale > 1e-10)
X <- X[, keep_cols]
center <- center[keep_cols]
scale <- scale[keep_cols]
active_set <- b[, 1] != 0
lsu <- casl_lenet_update_beta_kkt(X, y, b[, 1, drop=FALSE],
lambda[1], active_set, maxit)
b[, 1] <- lsu$b
for (i in seq_along(lambda)[-1])
{
lsu <- casl_lenet_update_beta_kkt(X, y, b[, i - 1L,
drop=FALSE],
lambda[i], lsu$active_set,
maxit)
b[, i] <- lsu$b
}
list(b=b, a0=a0, center=center, scale=scale,
keep_cols=keep_cols)
}
#' Compute generalized linear elastic net with coordinate descent.
#'
#' @param X A numeric data matrix.
#' @param y Response vector.
#' @param lambda The penalty term.
#' @param alpha Value from 0 and 1; balance between l1/l2 penalty.
#' @param family Instance of an R `family` object.
#' @param maxit Integer maximum number of iterations.
#' @param tol Numeric tolerance parameter.
#'
#' @return Regression vector beta of length ncol(X).
#'
#' @author Taylor Arnold, Michael Kane, Bryan Lewis.
#'
#' @references
#'
#' Taylor Arnold, Michael Kane, and Bryan Lewis.
#' \emph{A Computational Approach to Statistical Learning}.
#' Chapman & Hall/CRC Texts in Statistical Science, 2019.
#'
#' @export
casl_glenet <-
function(X, y, lambda, alpha=1, family=stats::binomial(),
maxit=10000L, tol=1e-5)
{
b <- matrix(0, nrow=ncol(X), ncol=length(lambda))
if (!is.null(colnames(X)))
{
rownames(b) <- colnames(X)
}
for (j in seq_along(lambda))
{
if (j > 1L)
{
b[, j] <- b[, j - 1L]
}
for (i in seq_len(maxit))
{
eta <- X %*% b[, j]
g <- family$linkinv(eta)
gprime <- family$mu.eta(eta)
z <- eta + (y - g) / gprime
W <- as.vector(gprime^2 / family$variance(g)) / nrow(X)
old_b <- b[,j]
b[, j] <- casl_lenet_update_beta(X, z, lambda[j], alpha,
b[, j, drop = FALSE], W)
if (max(abs(b[, j] - old_b)) < tol)
{
break
}
}
if (i == maxit)
{
warning("Function casl_glenet did not converge.")
}
}
b
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.