train: Main training function.

Description Usage Arguments Value Examples

View source: R/train.R

Description

Main training function.

Usage

1
2
train(negatives, positives, prelist, postlist, field, count, copyrange,
  pcut, minpublic, updateProgress = NULL)

Arguments

negatives

Dataframe of sequence frequencies in negative samples.

positives

Datafram of sequence frequencies in positive samples.

prelist

Vector of negative training samples.

postlist

Vector of positive training samples.

field

String containing the column or columns (space-delimited) of interest.

count

String containing the column name for colontype counts.

copyrange

Integer Vector of the min and max copy of a sequence, within a sample, to be considered.

pcut

P-value threshold for fisher-exact test.

minpublic

Sequence frequency threshold to be considered.

updateProgress

Function for updating a progress bar in a Shiny interface.

Value

List containing both negtive (n) and positive (v) clonotype percentages.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
FIELD <- "vGeneName aminoAcid jGeneName"
COUNT <- "copy"
P_CUTOFF <- 0.1
MIN_PUBLIC <- 2
COPY_RANGE <- "1 99"

listPos <- tsvDir(system.file("extdata", "Post", package="iCAT"))
listNeg <- tsvDir(system.file("extdata", "Pre", package="iCAT"))

naive <- readTrn(listNeg, FIELD, COUNT, COPY_RANGE, "naive")
vaccs <- readTrn(listPos, FIELD, COUNT, COPY_RANGE, "vacc")  

mod <- train(naive, vaccs, listNeg, listPos, FIELD, COUNT, COPY_RANGE, P_CUTOFF, MIN_PUBLIC, NULL)

BioHPC/iCAT documentation built on Oct. 30, 2021, 3:12 p.m.