h5mread: An alternative to 'rhdf5::h5read'

View source: R/h5mread.R

h5mreadR Documentation

An alternative to rhdf5::h5read

Description

An efficient and flexible alternative to rhdf5::h5read().

Usage

h5mread(filepath, name, starts=NULL, counts=NULL, noreduce=FALSE,
        as.vector=NA, as.integer=FALSE, as.sparse=FALSE,
        method=0L, use.H5Dread_chunk=FALSE)

get_h5mread_returned_type(filepath, name, as.integer=FALSE)

Arguments

filepath

The path (as a single string) to the HDF5 file where the dataset to read from is located, or an H5File object.

Note that you must create and use an H5File object if the HDF5 file to access is stored in an Amazon S3 bucket. See ?H5File for how to do this.

Also please note that H5File objects must NOT be used in the context of parallel evaluation at the moment.

name

The name of the dataset in the HDF5 file.

starts, counts

starts and counts are used to specify the array selection. Each argument can be either NULL or a list with one list element per dimension in the dataset.

If starts and counts are both NULL, then the entire dataset is read.

If starts is a list, each list element in it must be a vector of valid positive indices along the corresponding dimension in the dataset. An empty vector (integer(0)) is accepted and indicates an empty selection along that dimension. A NULL is accepted and indicates a full selection along the dimension so has the same meaning as a missing subscript when subsetting an array-like object with [. (Note that for [ a NULL subscript indicates an empty selection.)

Each list element in counts must be NULL or a vector of non-negative integers of the same length as the corresponding list element in starts. Each value in the vector indicates how many positions to select starting from the associated start value. A NULL indicates that a single position is selected for each value along the corresponding dimension.

If counts is NULL, then each index in each starts list element indicates a single position selection along the corresponding dimension. Note that in this case the starts argument is equivalent to the index argument of h5read and extract_array (with the caveat that h5read doesn't accept empty selections).

Finally note that when counts is not NULL then the selection described by starts and counts must be strictly ascending along each dimension.

noreduce

TODO

as.vector

Should the data be returned in a vector instead of an array? By default (i.e. when set to NA), the data is returned in an ordinary array when reading from a multidimensional dataset, and in an ordinary vector when reading from a 1D dataset. You can override this by setting as.vector to TRUE or FALSE.

as.integer

TODO

as.sparse

TODO

method

TODO

use.H5Dread_chunk

TODO

Details

DETAILS COMING SOON...

Value

h5mread() returns an ordinary array or vector if as.sparse is FALSE (the default), and a COO_SparseArray object if as.sparse is TRUE.

get_h5mread_returned_type() returns the type of the array or vector that will be returned by h5mread(). Equivalent to (but more efficient than):

  typeof(h5mread(filepath, name, rep(list(integer(0)), ndim)))
  

where ndim is the number of dimensions (a.k.a. rank in HDF5 jargon) of the dataset.

See Also

  • H5File objects.

  • h5read in the rhdf5 package.

  • extract_array in the S4Arrays package.

  • COO_SparseArray objects in the SparseArray package.

  • The TENxBrainData dataset (in the TENxBrainData package).

  • h5mread_from_reshaped to read data from a virtually reshaped HDF5 dataset.

Examples

## ---------------------------------------------------------------------
## BASIC USAGE
## ---------------------------------------------------------------------
m0 <- matrix((runif(600) - 0.5) * 10, ncol=12)
M0 <- writeHDF5Array(m0, name="M0")

m <- h5mread(path(M0), "M0")
stopifnot(identical(m0, m))

m <- h5mread(path(M0), "M0", starts=list(NULL, c(3, 12:8)))
stopifnot(identical(m0[ , c(3, 12:8)], m))

m <- h5mread(path(M0), "M0", starts=list(integer(0), c(3, 12:8)))
stopifnot(identical(m0[NULL , c(3, 12:8)], m))

m <- h5mread(path(M0), "M0", starts=list(1:5, NULL), as.integer=TRUE)
storage.mode(m0) <- "integer"
stopifnot(identical(m0[1:5, ], m))

a0 <- array(1:350, c(10, 5, 7))
A0 <- writeHDF5Array(a0, filepath=path(M0), name="A0")
h5ls(path(A0))

a <- h5mread(path(A0), "A0", starts=list(c(2, 7), NULL, 6),
                             counts=list(c(4, 2), NULL, NULL))
stopifnot(identical(a0[c(2:5, 7:8), , 6, drop=FALSE], a))

## Load the data in a sparse array representation:

m1 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
M1 <- writeHDF5Array(m1, name="M1", chunkdim=c(3L, 2L))

index <- list(5:3, NULL)
m <- h5mread(path(M1), "M1", starts=index)
coo <- h5mread(path(M1), "M1", starts=index, as.sparse=TRUE)
class(coo)  # COO_SparseArray object (see ?COO_SparseArray)
as(coo, "dgCMatrix")
stopifnot(identical(m, as.array(coo)))

## ---------------------------------------------------------------------
## PERFORMANCE
## ---------------------------------------------------------------------
library(ExperimentHub)
hub <- ExperimentHub()

## With the "sparse" TENxBrainData dataset
## ---------------------------------------
fname0 <- hub[["EH1039"]]
h5ls(fname0)  # all datasets are 1D datasets

index <- list(77 * sample(34088679, 5000, replace=TRUE))
## h5mread() is about 4x faster than h5read():
system.time(a <- h5mread(fname0, "mm10/data", index))
system.time(b <- h5read(fname0, "mm10/data", index=index))
stopifnot(identical(a, as.vector(b)))

index <- list(sample(1306127, 7500, replace=TRUE))
## h5mread() is about 20x faster than h5read():
system.time(a <- h5mread(fname0, "mm10/barcodes", index))
system.time(b <- h5read(fname0, "mm10/barcodes", index=index))
stopifnot(identical(a, as.vector(b)))

## With the "dense" TENxBrainData dataset
## --------------------------------------
fname1 <- hub[["EH1040"]]
h5ls(fname1)  # "counts" is a 2D dataset

set.seed(33)
index <- list(sample(27998, 300), sample(1306127, 450))
## h5mread() is about 2x faster than h5read():
system.time(a <- h5mread(fname1, "counts", index))
system.time(b <- h5read(fname1, "counts", index=index))
stopifnot(identical(a, b))

## Alternatively 'as.sparse=TRUE' can be used to reduce memory usage:
system.time(coo <- h5mread(fname1, "counts", index, as.sparse=TRUE))
stopifnot(identical(a, as.array(coo)))

## The bigger the selection, the greater the speedup between
## h5read() and h5mread():
## Not run: 
  index <- list(sample(27998, 1000), sample(1306127, 1000))
  ## h5mread() about 4x faster than h5read() (12s vs 48s):
  system.time(a <- h5mread(fname1, "counts", index))
  system.time(b <- h5read(fname1, "counts", index=index))
  stopifnot(identical(a, b))

  ## With 'as.sparse=TRUE' (about the same speed as with 'as.sparse=FALSE'):
  system.time(coo <- h5mread(fname1, "counts", index, as.sparse=TRUE))
  stopifnot(identical(a, as.array(coo)))

## End(Not run)

Bioconductor/HDF5Array documentation built on Nov. 30, 2024, 3:14 a.m.