View source: R/glpls1a.error.R
glpls1a.mlogit.cv.error | R Documentation |
Leave-one-out cross-validation training set error for fitting MIRWPLS or MIRWPLSF model for multi-group classification
glpls1a.mlogit.cv.error(train.X, train.y, K.prov = NULL, eps = 0.001,lmax = 100, mlogit = T, br = T)
train.X |
n by p design matrix (with no intercept term) for training set |
train.y |
response vector with class lables 1 to C+1 for C+1 group classification, baseline class should be 1 |
K.prov |
number of PLS components |
eps |
tolerance for convergence |
lmax |
maximum number of iteration allowed |
mlogit |
if |
br |
TRUE if Firth's bias reduction procedure is used |
error |
LOOCV training error |
error.obs |
the misclassified error observation indices |
Beiying Ding, Robert Gentleman
Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38(4): 374-381.
glpls1a.cv.error
, glpls1a.train.test.error
,glpls1a
, glpls1a.mlogit
,glpls1a.logit.all
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)
## no bias reduction
glpls1a.mlogit.cv.error(x,y,br=FALSE)
glpls1a.mlogit.cv.error(x,y,mlogit=FALSE,br=FALSE)
## bias reduction
glpls1a.mlogit.cv.error(x,y,br=TRUE)
glpls1a.mlogit.cv.error(x,y,mlogit=FALSE,br=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.