View source: R/glpls1a.error.R
glpls1a.train.test.error | R Documentation |
Out-of-sample test set error for fitting IRWPLS or IRWPLSF model on the training set for two-group classification
glpls1a.train.test.error(train.X,train.y,test.X,test.y,K.prov=NULL,eps=1e-3,lmax=100,family="binomial",link="logit",br=T)
train.X |
n by p design matrix (with no intercept term) for training set |
train.y |
response vector (0 or 1) for training set |
test.X |
transpose of the design matrix (with no intercept term) for test set |
test.y |
response vector (0 or 1) for test set |
K.prov |
number of PLS components, default is the rank of train.X |
eps |
tolerance for convergence |
lmax |
maximum number of iteration allowed |
family |
glm family, |
link |
link function, |
br |
TRUE if Firth's bias reduction procedure is used |
error |
out-of-sample test error |
error.obs |
the misclassified error observation indices |
predict.test |
the predicted probabilities for test set |
Beiying Ding, Robert Gentleman
Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38(4): 374-381.
glpls1a.cv.error
,
glpls1a.mlogit.cv.error
, glpls1a
, glpls1a.mlogit
, glpls1a.logit.all
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
x1 <- matrix(rnorm(10),ncol=2)
y1 <- sample(0:1,5,TRUE)
## no bias reduction
glpls1a.train.test.error(x,y,x1,y1,br=FALSE)
## bias reduction
glpls1a.train.test.error(x,y,x1,y1,br=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.