Description Usage Arguments Details Value Note Author(s) References Examples
hierarchical clustering a momentum as selection criteria for universe reduction
1 | Feature.LM_risk.adj(data, Cno)
|
data |
return matrix |
Cno |
number of clusters |
hierarchical clustering and feature selection for portfolio construction
returns a number of assets according to inputs
RIS
Thomas
none
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (data, Cno)
{
c <- cor.shrink(data, verbose = FALSE)
d <- as.dist(1 - c)
hc <- hclust(d, method = "ward")
c.tree <- cutree(hc, k = Cno)
assets <- rep(NA, max(c.tree))
for (i in 1:(max(c.tree))) {
i.data <- apply(data[(dim(data)[1] - 52):dim(data)[1],
which(c.tree == i)], 2, cumprod)
trends <- rep(NA, length(i.data[1, ]))
for (j in 1:(length(i.data[1, ]))) {
trends[j] <- lm(i.data[, j] ~ c(1:length(i.data[,
j])))$coefficients[2]
}
assets[i] <- colnames(i.data)[which(max(trends) == trends)]
}
return(assets)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.