#' Plots density functions of use versus availability from a training data frame
#'
#' @description Plots the relative densities of ones (presence, a.k.a, "use") versus zeroes (background, a.k.a, "availability") for each environmental predictor in a training data frame. This plot helps to understand the relationship between use and availability in order to make informed decisions during variable selection. When for a given variable the density of use peaks over low availability it indicates that the species selects those values of a variable at a higher rate than what is expected by chance. On the other hand, variables with a very high overlap between use and availability will likely turn out to have a low predictive value during SDM fitting.
#'
#' @usage plotUseAvailability(
#' x,
#' presence.column = "presence",
#' variables = NULL,
#' exclude.variables = NULL,
#' axis.text.size = 6,
#' legend.text.size = 12,
#' strip.text.size = 10
#' )
#'
#' @param x A data frame with a presence column with 1 indicating presence and 0 indicating background, and columns with predictor values.
#' @param presence.column Character, name of the presence column.
#' @param variables Character vector, names of the columns representing predictors. If \code{NULL}, all numeric variables but \code{presence.column} are considered.
#' @param exclude.variables Character vector, variables to exclude from the analysis.
#' @param axis.text.size Numeric, size of the axis labels.
#' @param legend.text.size Numeric, size of the legend labels.
#' @param strip.text.size Numeric, size of the panel names.
#'
#' @return A ggplot object.
#'
#' @examples
#'data("virtualSpeciesPB")
#'x <- plotUseAvailability(
#' x = virtualSpeciesPB,
#' presence.column = "presence",
#' variables = NULL,
#' exclude.variables = c("x", "y")
#')
#'
#' @author Blas Benito <blasbenito@gmail.com>
#' @export
plotUseAvailability <- function(x, presence.column = "presence", variables = NULL, exclude.variables = NULL, axis.text.size = 6, legend.text.size = 12, strip.text.size = 10){
#getting variables
if(is.null(variables) == TRUE){
variables <- colnames(x)[colnames(x) != presence.column]
}
if(is.null(exclude.variables) == FALSE){
variables <- variables[!(variables %in% exclude.variables)]
}
#subsetting x
x <- x[, c(presence.column, variables)]
#keeping numeric columns only and removing NA
x <-
x[, unlist(lapply(x, is.numeric))] %>%
na.omit()
#to long format
x.long <-
x %>%
tidyr::pivot_longer(
cols = variables,
names_to = "variable",
values_to = "value"
) %>%
data.frame() %>%
dplyr::rename(presence = 1)
#presence to factor for easier plotting
x.long[, presence.column] <- factor(x.long[, presence.column])
#plotea con ggplot
plot.use.availability <- ggplot2::ggplot(
data = x.long,
aes(
x = value,
group = presence,
fill = presence
)
) +
ggplot2::geom_density(
alpha = 0.5,
size = 0.2
) +
ggplot2::facet_wrap("variable", scales = "free") +
viridis::scale_fill_viridis(
discrete = TRUE,
direction = -1
) +
ggplot2::xlab("") +
ggplot2::ylab("") +
theme(
legend.position = "bottom",
axis.text = element_text(size = axis.text.size),
legend.text = element_text(size = legend.text.size),
strip.text = element_text(size = strip.text.size)
)
return(plot.use.availability)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.