## ------------------------------------------------------------------------
library(neighbouRhood)
library(data.table)
library(dplyr)
library(magrittr)
library(dtplyr)
library(ggplot2)
library(parallel)
## ------------------------------------------------------------------------
fn_cell = '/mnt/bbvolume/server_homes/janaf/Data/2018/NeighborhoodVito/20180727_celldata.csv'
fn_rel = '/mnt/bbvolume/server_homes/janaf/Data/2018/NeighborhoodVito/20180727_reldata.csv'
## ------------------------------------------------------------------------
dat_cell = fread(fn_cell)
dat_relation = fread(fn_rel)
dat_relation[, `First Object Name` := 'cell']
dat_relation[, `Second Object Name` := 'cell']
dat_relation[, `Relationship` := 'Neighbors']
## ------------------------------------------------------------------------
d = prepare_tables(dat_cell, dat_relation, col_label = 'CellType', objname = 'cell', col_group = NULL)
dat_baseline = apply_labels(d[[1]], d[[2]]) %>%
aggregate_histo()
## ------------------------------------------------------------------------
nperm = 1000
## ------------------------------------------------------------------------
start_time <- Sys.time()
dat_perm = mclapply(1:nperm, function(x){
shuffle_labels(d[[1]]) %>%
apply_labels(d[[2]]) %>%
aggregate_histo()
},mc.cores = 16, mc.cleanup=T
) %>%
rbindlist(idcol = 'run')
end_time <- Sys.time()
print(end_time - start_time)
## ------------------------------------------------------------------------
start_time <- Sys.time()
dat_p <- calc_p_vals(dat_baseline, dat_perm, n_perm = nperm)
end_time <- Sys.time()
print(end_time - start_time)
## ----Read in Janas output for comparison---------------------------------
fn_enr = '/mnt/bbvolume/server_homes/janaf/Data/2018/NeighborhoodVito/PvalsNicolasData_enrichment.csv'
fn_avoid = '/mnt/bbvolume/server_homes/janaf/Data/2018/NeighborhoodVito/PvalsNicolasData_avoidence.csv'
dat_j_enr = fread(fn_enr)
dat_j_avoid = fread(fn_avoid)
## ------------------------------------------------------------------------
setnames(dat_j_enr, c('CellType2new', 'CellType1new', 'Pvalue'), c( 'FirstLabel', 'SecondLabel', 'p_jenr'))
setnames(dat_j_avoid, c('CellType2new', 'CellType1new', 'Pvalue'), c( 'FirstLabel', 'SecondLabel', 'p_javoid'))
## ------------------------------------------------------------------------
dat =dat_p %>%
mutate(ImageNumber= group) %>%
merge(dat_j_enr, all=T, by= c('ImageNumber','FirstLabel', 'SecondLabel')) %>%
merge(dat_j_avoid, all=T, by= c('ImageNumber','FirstLabel', 'SecondLabel'))
## ------------------------------------------------------------------------
dat[is.na(p_gt), p_gt:=1]
dat[is.na(p_lt), p_lt:=1]
## ------------------------------------------------------------------------
ggplot(dat, aes(x=(p_gt), y=(p_jenr)))+
geom_point(alpha=0.1)
## ------------------------------------------------------------------------
ggplot(dat, aes(x=(p_gt), y=(p_jenr-p_gt)))+
geom_point(alpha=0.1)+
geom_smooth()
## ------------------------------------------------------------------------
ggplot(dat, aes(x=log10(p_gt), y=log10(p_jenr)-log10(p_gt)))+
geom_point(alpha=0.1)+
geom_smooth()
## ------------------------------------------------------------------------
lm( p_gt ~ p_jenr, dat)
## ------------------------------------------------------------------------
ggplot(dat, aes(x=log10(p_gt), y=log10(p_jenr)))+
geom_point(alpha=0.1) +
coord_equal()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.