OptiK | R Documentation |
This function iterates through a select range of k-weight parameters and stores the optimal parameter in the Seurat object
OptiK( data, lab = "seurat_clusters", range = c(10, 100), dims = 30, perc = 20, num = NA, seed = 1984 )
data |
Reference Seurat object |
lab |
The reference label to treat as clusters. Default is "seurat_clusters" |
range |
The range of k-weight values to loop through. Default is 10-100. |
dims |
The number of PCs to consider when discovering anchors |
perc |
The percent of cells to subsample from the refeerence for the test query. Default is 20%. |
num |
If perc = F, OptiK will look for a specific number of cells specified here. |
seed |
Set the seed for reproducible results. Default = 1984. |
Returns a Seurat object with a new slot where the k-weight is stored: misc$CellTools$opti_k
Rheaume, B. A., & Trakhtenberg, E. F. (2022). Self-learning algorithm for denoising and advancing the integration of scRNA-seq datasets improves the identification of resilient and susceptible retinal ganglion cell types bioRxiv.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.