tests/testthat/_snaps/generics.md

summary for data_preparation separate=TRUE

Code
  summary(object, digits = 3)
Output
  Expanded Trial Emulation data

  Expanded data saved in 10 csv files:
   1: random_temp_dir_path/trial_0.csv
   2: random_temp_dir_path/trial_1.csv
   3: random_temp_dir_path/trial_2.csv
  ---
   8: random_temp_dir_path/trial_7.csv
   9: random_temp_dir_path/trial_8.csv
  10: random_temp_dir_path/trial_9.csv


  Number of observations in expanded data: 2346 
  First trial period: 0 
  Last trial period: 9

  ------------------------------------------------------------ 
  Weight models
  -------------

  Treatment switch models
  -----------------------

  switch_models$switch_d0:
   P(treatment = 1 | previous treatment = 0) for denominator

          term estimate std.error statistic  p.value
   (Intercept)   -0.281     0.067      -4.2 2.69e-05

  ------------------------------------------------------------ 
  switch_models$switch_n0:
   P(treatment = 1 | previous treatment = 0) for numerator

          term estimate std.error statistic  p.value
   (Intercept)  -0.0303    0.0763    -0.398 6.91e-01
         age_s  -0.5164    0.0728    -7.093 1.32e-12

  ------------------------------------------------------------ 
  switch_models$switch_d1:
   P(treatment = 1 | previous treatment = 1) for denominator

          term estimate std.error statistic  p.value
   (Intercept)     0.98    0.0784      12.5 6.51e-36

  ------------------------------------------------------------ 
  switch_models$switch_n1:
   P(treatment = 1 | previous treatment = 1) for numerator

          term estimate std.error statistic  p.value
   (Intercept)    1.203    0.0977     12.31 7.55e-35
         age_s   -0.379    0.0874     -4.34 1.44e-05

  ------------------------------------------------------------ 
  Censoring models
  ----------------

  censor_models$cens_d0:
  Model for P(cense = 0 | X, previous treatment = 0) for denominator

          term estimate std.error statistic  p.value
   (Intercept)     1.69    0.0914      18.5 4.11e-76

  ------------------------------------------------------------ 
  censor_models$cens_n0:
  Model for P(cense = 0 | X, previous treatment = 0) for numerator

          term estimate std.error statistic  p.value
   (Intercept)    1.493     0.122     12.22 2.48e-34
            X1    0.409     0.185      2.21 2.68e-02

  ------------------------------------------------------------ 
  censor_models$cens_d1:
  Model for P(cense = 0 | X, previous treatment = 1) for denominator

          term estimate std.error statistic  p.value
   (Intercept)      2.4     0.127        19 2.08e-80

  ------------------------------------------------------------ 
  censor_models$cens_n1:
  Model for P(cense = 0 | X, previous treatment = 1) for numerator

          term estimate std.error statistic  p.value
   (Intercept)     2.22     0.137     16.19 5.76e-59
            X1     0.93     0.367      2.54 1.12e-02

  ------------------------------------------------------------
Code
  print(object$censor_models[[1]], digits = 4)
Output
  Model for P(cense = 0 | X, previous treatment = 0) for denominator

          term estimate std.error statistic   p.value
   (Intercept)    1.687   0.09135     18.46 4.113e-76

   null.deviance df.null logLik   AIC   BIC deviance df.residual nobs
           787.8     908 -393.9 789.8 794.6    787.8         908  909

  Object saved at "random_temp_dir_path/cense_model_d0.rds"
Code
  print(object$censor_models[[1]], full = FALSE, digits = 4)
Output
  Model for P(cense = 0 | X, previous treatment = 0) for denominator

          term estimate std.error statistic   p.value
   (Intercept)    1.687   0.09135     18.46 4.113e-76

summary for data_preparation separate=FALSE

Code
  summary(object, digits = 3)
Output
  Expanded Trial Emulation data

          id trial_period followup_time outcome weight treatment X1
     1:    1            0             0       0  1.000         1  1
     2:    1            0             1       0  1.011         1  1
     3:    1            0             2       0  0.994         1  1
    ---                                                            
  9474: 1000            0             7       0  0.821         1  0
  9475: 1000            0             8       0  0.761         1  0
  9476: 1000            0             9       1  0.698         1  0
        assigned_treatment dose
     1:                  1    1
     2:                  1    2
     3:                  1    3
    ---                        
  9474:                  1    8
  9475:                  1    9
  9476:                  1   10

  Number of observations in expanded data: 9476 
  First trial period: 0 
  Last trial period: 9

  ------------------------------------------------------------ 
  Weight models
  -------------

  Treatment switch models
  -----------------------

  switch_models$switch_d0:
   P(treatment = 1 | previous treatment = 0) for denominator

          term estimate std.error statistic  p.value
   (Intercept)   -0.303    0.0378     -8.01 1.17e-15

  ------------------------------------------------------------ 
  switch_models$switch_n0:
   P(treatment = 1 | previous treatment = 0) for numerator

          term estimate std.error statistic  p.value
   (Intercept)    -0.11    0.0454     -2.42 1.54e-02
         age_s    -0.32    0.0422     -7.60 3.04e-14

  ------------------------------------------------------------ 
  switch_models$switch_d1:
   P(treatment = 1 | previous treatment = 1) for denominator

          term estimate std.error statistic  p.value
   (Intercept)    0.757    0.0454      16.7 2.27e-62

  ------------------------------------------------------------ 
  switch_models$switch_n1:
   P(treatment = 1 | previous treatment = 1) for numerator

          term estimate std.error statistic  p.value
   (Intercept)    1.004    0.0624     16.09 3.12e-58
         age_s   -0.341    0.0554     -6.15 7.72e-10

  ------------------------------------------------------------ 
  Censoring models
  ----------------

  censor_models$cens_d0:
  Model for P(cense = 0 | X, previous treatment = 0) for denominator

          term estimate std.error statistic   p.value
   (Intercept)     1.71    0.0518      32.9 1.41e-237

  ------------------------------------------------------------ 
  censor_models$cens_n0:
  Model for P(cense = 0 | X, previous treatment = 0) for numerator

          term estimate std.error statistic   p.value
   (Intercept)    1.558    0.0696     22.39 5.51e-111
            X1    0.314    0.1045      3.01  2.65e-03

  ------------------------------------------------------------ 
  censor_models$cens_d1:
  Model for P(cense = 0 | X, previous treatment = 1) for denominator

          term estimate std.error statistic   p.value
   (Intercept)     2.74    0.0888      30.9 2.19e-209

  ------------------------------------------------------------ 
  censor_models$cens_n1:
  Model for P(cense = 0 | X, previous treatment = 1) for numerator

          term estimate std.error statistic   p.value
   (Intercept)     2.67     0.100     26.67 9.51e-157
            X1     0.32     0.218      1.47  1.42e-01

  ------------------------------------------------------------
Code
  print(object$switch_models[[1]], digits = 4)
Output
  P(treatment = 1 | previous treatment = 0) for denominator

          term estimate std.error statistic   p.value
   (Intercept)  -0.3028   0.03781    -8.007 1.174e-15

   null.deviance df.null logLik  AIC  BIC deviance df.residual nobs
            3903    2861  -1951 3905 3911     3903        2861 2862
Code
  print(object$switch_models[[1]], full = FALSE, digits = 4)
Output
  P(treatment = 1 | previous treatment = 0) for denominator

          term estimate std.error statistic   p.value
   (Intercept)  -0.3028   0.03781    -8.007 1.174e-15

summary for initiators

Code
  summary(object, digits = 3)
Output
  Trial Emulation Outcome Model

  Outcome model formula:
  outcome ~ assigned_treatment + dose + trial_period + I(trial_period^2) + 
      followup_time + I(followup_time^2) + X1

  Coefficent summary (robust):
                names estimate robust_se    2.5%   97.5%       z p_value
          (Intercept)  -4.1266    0.2437 -4.6043 -3.6489 -16.931  <2e-16
   assigned_treatment   0.3091    0.2788 -0.2373  0.8555   1.109   0.267
                 dose  -0.1922    0.1174 -0.4224  0.0380  -1.636   0.102
         trial_period  -0.0668    0.0926 -0.2483  0.1147  -0.721   0.471
    I(trial_period^2)  -0.0116    0.0199 -0.0506  0.0273  -0.585   0.558
        followup_time   0.2249    0.1401 -0.0496  0.4995   1.606   0.108
   I(followup_time^2)  -0.0181    0.0169 -0.0513  0.0151  -1.070   0.284
                   X1  -0.1110    0.2291 -0.5600  0.3381  -0.484   0.628

  object$model contains the fitted glm model object.
  object$robust$matrix contains the full robust covariance matrix.
Code
  summary(object, digits = 7)
Output
  Trial Emulation Outcome Model

  Outcome model formula:
  outcome ~ assigned_treatment + dose + trial_period + I(trial_period^2) + 
      followup_time + I(followup_time^2) + X1

  Coefficent summary (robust):
                names    estimate  robust_se        2.5%       97.5%           z
          (Intercept) -4.12662820 0.24372909 -4.60433721 -3.64891919 -16.9312093
   assigned_treatment  0.30913237 0.27877733 -0.23727119  0.85553592   1.1088863
                 dose -0.19218381 0.11744822 -0.42238232  0.03801470  -1.6363280
         trial_period -0.06679054 0.09260338 -0.24829317  0.11471209  -0.7212538
    I(trial_period^2) -0.01163048 0.01987472 -0.05058494  0.02732398  -0.5851896
        followup_time  0.22492444 0.14006997 -0.04961271  0.49946158   1.6058005
   I(followup_time^2) -0.01812884 0.01693641 -0.05132420  0.01506652  -1.0704062
                   X1 -0.11095373 0.22910223 -0.55999411  0.33808665  -0.4842979
     p_value
   < 2.2e-16
   0.2674792
   0.1017710
   0.4707534
   0.5584203
   0.1083177
   0.2844365
   0.6281745

  object$model contains the fitted glm model object.
  object$robust$matrix contains the full robust covariance matrix.


CAM-Roche/RandomisedTrialsEmulation documentation built on April 14, 2025, 7:44 a.m.