GCluster | R Documentation |
Graphical based cluster
This function uses the Network Modularity Optimazation Cluster Method to cluster the cells. It returns a object of communities of igraph.
GCluster(dat=dat, wt=4, k=NULL, method="louvain");
dat |
data.frame or matrix |
wt |
weight |
k |
cluster number |
method |
The method should be one of louvain, spinglass, fast_greedy, infomap or label_prop. |
A object of communities of igraph
rm(list=ls());
library(scCorr);
## get data
## 5 clusters of CD4 T cells
ct.c <- c(6:10);
## tsne result/output
tsnef <- "https://github.com/CBIIT-CGBB/scCorr/raw/master/data/01/do_tsne30_2000.txt";
tsne <- read.table(tsnef, header=T);
## cluster matrix
cluf <- "https://github.com/CBIIT-CGBB/scCorr/raw/master/data/01/03clust_table.txt";
clu <- read.table(cluf, header=T, sep="\t");
## check row.names
sum(row.names(tsne)==row.names(clu))==nrow(clu);
## sample index of CD4 T cells in the cluster matrix
s.i <- which(clu[,23]
## some single cells of CD4 T cells
dat <- tsne[s.i,];
dat.n <- row.names(dat);
## scale
cell.number <- nrow(dat);
v <- 112.65840 + 0.01799 * cell.number
c1 <- scale.v(dat[,1], -v, v)
c2 <- scale.v(dat[,2], -v, v)
dat <- data.frame(v1=c1, v2=c2, row.names=row.names(dat))
g_clut <- GCluster(dat, k = 40)
g_label <- g_clut$membership
out <- data.frame(dat, cluster=g_label)
head(out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.