##########################################################################
##########################################################################
##########################################################################
# Function - plot_two_groups
# - Write function to plot output from bootstrap resampling for two
# groups comparisons across a range of sample sizes
##########################################################################
##########################################################################
##########################################################################
# Define plotting function ---------------------------------
#' Plot output from boot_two_groups
#'
#'
#' @name plot_two_groups
#' @description Plot output from boot_two.
#' @param x Output from boot_two_groups function. Defaults to 'sims'.
#' @param n_max Numeric. Maximum sample size to extrapolate simulations.
#' @param n_min Numeric. Minimum sample size to extrapolate simulations.
#' Defaults to 3.
#' @param colour_exp Colour of the experimental data. Defaults to "blue".
#' @param colour_extrap Colour of the extrapolated data. Defaults to "red".
#' @param legend.position Position of the legend. Defaults to "top". Can be "bottom", "left", "right", or "none".
#' @param alpha_val Change the degree of shading of the graphs. Default is 0.2.
#' @param ggtheme The theme for the ggplot created. See ggplot2 themes for options. Default set to theme_classic().
#' @return Two plots: (a) the precision of the estimates for the difference in CTmin
#' between the two selected groups across sample sizes; (b)
#' the 95% confidence interval of the mean difference in CTmin between the two selected groups.
#' @import ggplot2
#' @importFrom cowplot plot_grid
#' @importFrom dplyr bind_rows
#' @importFrom dplyr between
#' @export
#' @examples
#' \donttest{
#' sims <- boot_two(data = coreid_data,
#' groups_col = col,
#' response = response,
#' group1 = "Catorhintha schaffneri_APM",
#' group2 = "Catorhintha schaffneri_NPM",
#' n_max = 30,
#' iter = 99)
#'
#' plots <- plot_two_groups(x = sims,
#' n_min = 3,
#' n_max = 30,
#' colour_exp = "gold",
#' colour_extrap = "darkgreen",
#' legend.position = "right")
#' }
utils::globalVariables(c("id", 'sd_width_lower', 'sd_width_upper', 'prop_ci_contain'))
plot_two_groups <- function(x, n_min = 3, n_max, colour_exp = "blue", colour_extrap = "red", legend.position = "top", ggtheme = theme_classic(), point_size = 1, point_shape = 16, alpha_val = 0.2){
ggplot2::theme_set(ggtheme)
# Create dataframe for experimental data
exp_data <- {{ x }} %>%
dplyr::filter(dplyr::between(sample_size, {{ n_min }}, {{ n_max }}))
# Create dataframe for extrapolations from data
ext_data <- {{ x }} %>%
dplyr::filter(dplyr::between(sample_size, {{ n_max }}, max(sample_size)))
# Make a combined datafram with id included to colour-code ribbon
both_data <- dplyr::bind_rows(exp_data, ext_data, .id = "id")
# Plot the width of the 95% CI
width_plot <- ggplot2::ggplot(data = {{ x }}, aes(x = sample_size,
y = width_ci)) +
geom_line(data = both_data, aes(x = sample_size,
y = width_ci,
colour = id),
alpha = 0.8) +
scale_colour_manual(values = c(colour_exp, colour_extrap),
labels = c("Experimental", "Extrapolation")) +
geom_ribbon(data = both_data, aes(ymin = sd_width_lower,
ymax = sd_width_upper,
fill = id),
linetype = 3,
alpha = alpha_val) +
scale_fill_manual(values = c(colour_exp, colour_extrap),
labels = c("Experimental", "Extrapolation")) +
theme_classic() +
geom_hline(yintercept = 0,
linetype = "dashed") +
labs(x = "Sample size (n)",
y = "Width of confidence interval (95% CI)",
subtitle = "(a)") +
theme(panel.border = element_rect(colour = "black", fill = NA),
axis.text = element_text(colour = "black"),
axis.title.x = element_text(margin = unit(c(2, 0, 0, 0), "mm")),
axis.title.y = element_text(margin = unit(c(0, 4, 0, 0), "mm")),
legend.position = "none")
# Plot the 95% CI of mean difference
ci_plot <- ggplot2::ggplot(data = {{ x }}, aes(x = sample_size,
y = mean_diff)) +
geom_line(data = {{ x }}, aes(x = sample_size,
y = mean_low_ci),
linetype = "dashed") +
geom_line(data = {{ x }}, aes(x = sample_size,
y = mean_upp_ci),
linetype = "dashed") +
geom_ribbon(data = both_data, aes(ymin = mean_low_ci,
ymax = mean_upp_ci,
fill = id),
linetype = 3,
alpha = alpha_val) +
scale_fill_manual(values = c(colour_exp, colour_extrap),
labels = c("Experimental", "Extrapolation")) +
geom_point(data = both_data, size = point_size, shape = point_shape, aes(x = sample_size,
y = mean_diff,
colour = id),
alpha = 0.8) +
scale_colour_manual(values = c(colour_exp, colour_extrap),
labels = c("Experimental", "Extrapolation")) +
theme_classic() +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(x = "Sample size (n)",
y = "Mean difference between groups (95% CI)",
subtitle = "(b)",
fill = "Data") +
theme(panel.border = element_rect(colour = "black", fill = NA),
axis.text = element_text(colour = "black"),
axis.title.x = element_text(margin = unit(c(2, 0, 0, 0), "mm")),
axis.title.y = element_text(margin = unit(c(0, 4, 0, 0), "mm")),
legend.position = legend.position,
legend.key = element_rect(linetype = "dashed")) +
guides(colour = "none")
# Combine the two plots
two_groups_output = cowplot::plot_grid(width_plot,
ci_plot,
ncol = 2)
return(two_groups_output)
}
##########################################################################
##########################################################################
##########################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.