hs_hclust: Perform hierarchical clustering on Raman spectra

Description Usage Arguments Examples

View source: R/hs_hclust.R

Description

Perform hierarchical clustering on Raman spectra

Usage

1
2
3
4
5
6
7
8
hs_hclust(
  hs.x,
  dist_method = "bray",
  clust_method = "pvclust",
  aggl_method = "ward.D2",
  nboot = 1000,
  ...
)

Arguments

hs.x

hyperSpec object

dist_method

Dissimilarity index, partial match to "manhattan", "euclidean", "canberra", "clark", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao" or "mahalanobis". Can be specified to "SCA" for Raman data.

clust_method

Choose regular hierarchical clustering or bootstrap supported hierarchical clustering with pvclust. Defaults to pvclust

aggl_method

the agglomerative method used in hierarchical clustering. This should be (an abbreviation of) one of "average", "ward.D", "ward.D2", "single", "complete", "mcquitty", "median" or "centroid". The default is "average".

nboot

Numnber of bootstraps for pvclust. Defaults to 1000.

...

Parameters to pass on to hclust().

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
## Short example

# Load hyperSpec object
data("hs_example")

# Preprocess spectra
hs.x.proc <- hs_preprocess(hs_example)
hs.x.proc <- hs_resample(hs.x.proc, sample = 10)

# Cluster
hclust_obj <- hs_hclust(hs.x.proc, dist_method = "manhattan",
clust_method = "pvclust")

CMET-UGent/MicroRaman documentation built on July 25, 2020, 6:20 p.m.