#' Applies OPLS noise filtering on numeric data
#'
#' `step_opls_denoise` creates a 'specification' of a recipe
#' step that will filter the first orthogonal component of the OPLS
#' transfomation on the columns.
#'
#' @param recipe A recipe object. The step will be added to the
#' sequence of operations for this recipe.
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param trained A logical to indicate if the quantities for
#' preprocessing have been estimated.
#' @param outcome When a single outcome is available, character
#' string or call to [dplyr::vars()] can be used to specify a single outcome
#' variable.
#' @param Wortho A vector a weights for the first orthogonal component. This is
#' `NULL` until computed by [prep.recipe()].
#' @param Portho A vector of loadings for the first orthogonal component. This is
#' `NULL` until computed by [prep.recipe()].
#' @param skip A logical. Should the step be skipped when the
#' recipe is baked by [bake.recipe()]? While all operations are baked
#' when [prep.recipe()] is run, some operations may not be able to be
#' conducted on new data (e.g. processing the outcome variable(s)).
#' Care should be taken when using `skip = TRUE` as it may affect
#' the computations for subsequent operations
#' @param id A character string that is unique to this step to identify it.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected), `value` (the
#' standard deviations and means), and `statistic` for the type of value.
#'
#' @importFrom recipes add_step rand_id ellipse_check step bake prep
#' @importFrom recipes printer terms_select check_type is_trained sel2char
#' @importFrom tibble tibble as_tibble
#' @importFrom generics tidy required_pkgs
#'
#' @export
#' @details
#' Orthogonal Projection to Latent Structurees (OPLS) allows the separation
#' of the predictor variations that are correlated and orthogonal to the response.
#' This allows to remove systematic variation that are not correlated to the response.
#'
#' The OPLS algorithm is implemented only for binary outcomes!
#'
#' OPLS calculation uses the implementation of the R package:
#' \url{https://bioconductor.org/packages/release/bioc/html/ropls.html}
#'
#'
#' @references
#' Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures
#' (O-PLS). Journal of Chemometrics, 16(3), 119–128. doi:10.1002/cem.695
#' \url{https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.695}
#'
#' Thévenot, E. A., Roux, A., Xu, Y., Ezan, E., & Junot, C. (2015). Analysis
#' of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index,
#' and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS
#' Statistical Analyses. Journal of Proteome Research, 14(8), 3322–3335.
#' doi:10.1021/acs.jproteome.5b00354
#' \url{https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00354}
#'
#' @examples
#' library(ropls)
#' library(tidymodels)
#' library(tidySpectR)
#'
#' data(sacurine)
#' attach(sacurine)
#'
#' genderFc <- sampleMetadata[, "gender"]
#'
#' urinedata <- dataMatrix %>%
#' cbind(genderFc) %>%
#' as_tibble() %>%
#' add_column(id = rownames(dataMatrix), .before = 1) %>%
#' select(-id)
#'
#' rec <- recipe(urinedata, genderFc ~.) %>%
#' step_normalize(all_predictors()) %>%
#' step_opls_denoise(all_predictors(), outcome = "genderFc")
#' tidy(rec)
#' rec %>% prep() %>% bake(NULL)
step_opls_denoise <-
function(recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
Wortho = NULL,
Portho = NULL,
skip = FALSE,
id = rand_id("opls_denoise")){
if (is.null(outcome)) {
rlang::abort("`outcome` should select one column.")
}
terms = ellipse_check(...)
add_step(
recipe,
step_opls_denoise_new(
terms = terms,
role = role,
trained = trained,
outcome = outcome,
Wortho = Wortho,
Portho = Portho,
skip = skip,
id = id
)
)
}
step_opls_denoise_new <-
function(terms, role, trained, outcome, Wortho, Portho, skip, id){
step(
subclass = "opls_denoise",
terms = terms,
role = role,
trained = trained,
outcome = outcome,
Wortho = Wortho,
Portho = Portho,
skip = skip,
id = id
)
}
#' @importFrom ropls opls getWeightMN getLoadingMN
#' @importFrom dplyr select
#' @importFrom utils capture.output
#' @export
prep.step_opls_denoise <- function(x, training, info = NULL, ...){
col_names <- terms_select(x$terms, info)
check_type(training[, col_names])
predictors <- training[, col_names]
outcomes <- select(training, x$outcome) %>% as.matrix()
invisible(
capture.output(
model <- opls(predictors, outcomes, predI = 1, orthoI = 1)
)
)
Wortho <- getWeightMN(model, orthoL = TRUE)
Portho <- getLoadingMN(model, orthoL = TRUE)
step_opls_denoise_new(
terms = x$terms,
role = x$role,
trained = TRUE,
outcome = x$outcome,
Wortho = Wortho,
Portho = Portho,
skip = x$skip,
id = x$identify
)
}
#' @importFrom dplyr bind_cols
#' @importFrom tibble as_tibble
#' @export
bake.step_opls_denoise <- function(object, new_data, ...){
opls_vars <- rownames(object$Wortho)
dat <- new_data[, opls_vars] %>%
as.matrix()
# Calculate new scores and remove noise
Tortho <- dat %*% object$Wortho
res <- dat - Tortho %*% t(object$Portho)
# Update data
new_data <- new_data[, !(colnames(new_data) %in% opls_vars), drop = FALSE]
new_data <- bind_cols(new_data, as_tibble(res))
as_tibble(new_data)
}
#' @export
print.step_opls_denoise <-
function(x, width = max(20, options()$width - 30), ...) {
cat("OPLS denoising for ", sep = "")
printer(rownames(x$Wortho), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_opls_denoise
#' @param x A `step_opls_denoise` object.
#' @export
tidy.step_opls_denoise <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = c(rownames(x$Wortho)),
statistic = rep(c("orthogonal weigths", "orthogonal loadings"), each = length(x$Wortho)),
value = c(x$Wortho, x$Portho))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
statistic = rlang::na_chr,
value = rlang::na_dbl)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_opls_denoise <- function(x, ...) {
c("tidySpectR")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.